A. | [1,$\frac{7}{4}$] | B. | [-$\frac{5}{2}$,-1] | C. | [0,$\sqrt{2}$] | D. | [-1,$\sqrt{2}$] |
分析 由P是BD上任意一點,可得:$\overrightarrow{AP}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AD}$,x∈[0,1],再由$\overrightarrow{CM}$=-$\frac{1}{2}$$\overrightarrow{AC}$=$-\frac{1}{2}$$\overrightarrow{AB}$$-\frac{1}{2}$$\overrightarrow{AD}$,可得$\overrightarrow{AP}$•$\overrightarrow{CM}$的表達式,進而得到$\overrightarrow{AP}$•$\overrightarrow{CM}$的取值范圍.
解答 解:∵P是BD上任意一點,
∴$\overrightarrow{AP}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AD}$,x∈[0,1],
$\overrightarrow{CM}$=-$\frac{1}{2}$$\overrightarrow{AC}$=$-\frac{1}{2}$$\overrightarrow{AB}$$-\frac{1}{2}$$\overrightarrow{AD}$,
∵|$\overrightarrow{AD}$|=2,|$\overrightarrow{AB}$|=1,且∠BAD=60°,
∴$\overrightarrow{AD}$2=4,$\overrightarrow{AB}$2=1,$\overrightarrow{AD}$•$\overrightarrow{AB}$=1,
∴$\overrightarrow{AP}$•$\overrightarrow{CM}$=[x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AD}$]•($-\frac{1}{2}$$\overrightarrow{AB}$$-\frac{1}{2}$$\overrightarrow{AD}$)
=$-\frac{x}{2}$$\overrightarrow{AB}$2-$\frac{1-x}{2}$$\overrightarrow{AD}$2-$\frac{1}{2}$$\overrightarrow{AD}$•$\overrightarrow{AB}$=$\frac{3}{2}$x-$\frac{5}{2}$∈[-$\frac{5}{2}$,-1],
故選:B
點評 本題考查的知識點是平面向量的數(shù)量積運算,一次函數(shù)的圖象和性質(zhì),難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{32}$ | B. | $\frac{9}{32}$ | C. | $\frac{7}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com