13.p:若(x-1)(y+2)=0,則x=1或y=-2則p的逆否命題是真命題,¬p是假命題.

分析 先判斷原命題的真假,可得其逆否命題和否定的真假.

解答 解:∵命題p:若(x-1)(y+2)=0,則x=1或y=-2,是真命題,
∴p的逆否命題是:若x≠1且y≠-2,則(x-1)(y+2)≠0,是真命題;
¬p是:若 (x-1)(y+2)=0 則 x≠1且y≠-2,是假命題.
故答案為:真命題,假命題

點評 本題以命題的真假判斷與應用為載體,考查了四種命題,命題的否定等知識點,難度基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}$,則f(f(1))=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{lo{g}_{3}(2x-m)}$的定義域為[1,+∞),則m=( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某企業(yè)為解決困難職工的住房問題,決定分批建設保障性住房供給困難職工,首批計劃用100萬元購買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高20元,已知建筑第1層樓房時,每平方米的建筑費用為920元.為了使該幢樓房每平方米的平均費用最低(費用包括建筑費用和購地費用),應把樓房建成幾層?此時平均費用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.坐標系與參數(shù)方程已知在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}$(θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸半軸為極軸)中直線l的方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲線C在極坐標系中的方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的體積為$\frac{243}{16}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求函數(shù)f(x)=$\sqrt{6sin(x+\frac{π}{6})-3\sqrt{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知tan(α+$\frac{π}{4}$)=2,則$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,則雙曲線C的離心率為(  )
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案