A. | $\frac{{2\sqrt{13}}}{5}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\frac{{2\sqrt{39}}}{9}$ | D. | $\sqrt{3}$ |
分析 確定△QAP為等邊三角形,設(shè)AQ=2R,則,OP=$\frac{2}{3}$R,利用勾股定理,結(jié)合余弦定理和離心率公式,計(jì)算即可得出結(jié)論.
解答 解:因?yàn)椤螾AQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,
所以△QAP為等邊三角形,
設(shè)AQ=2R,則PQ=2R,OP=$\frac{2}{3}$R,
漸近線方程為y=$\frac{a}$x,A(a,0),
取PQ的中點(diǎn)M,則AM=$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$,
由勾股定理可得(2R)2-R2=($\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$)2,
所以(ab)2=3R2(a2+b2)①,
在△OQA中,$\frac{\frac{64}{9}{R}^{2}+4{R}^{2}-{a}^{2}}{2•\frac{8}{3}R•2R}$=$\frac{1}{2}$,
所以$\frac{52}{9}$R2=a2②
①②結(jié)合c2=a2+b2,
可得e=$\frac{c}{a}$=$\frac{2\sqrt{13}}{5}$.
故選:A.
點(diǎn)評(píng) 本題考查離心率的計(jì)算,考查余弦定理、勾股定理,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (0,3) | C. | (0,8) | D. | (-1,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2] | C. | (2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com