分析 由已知得2n=128,解得n=7,由此利用二項(xiàng)展開(kāi)式的通項(xiàng)能求出常數(shù)項(xiàng).
解答 解:∵在(2x3-$\frac{1}{{\sqrt{x}}}}$)n的展開(kāi)式中,各二項(xiàng)式系數(shù)的和為128,
∴2n=128,解得n=7,
∴Tr+1=${C}_{7}^{r}(2{x}^{3})^{r}(-\frac{1}{\sqrt{x}})^{7-r}$=${C}_{7}^{r}•{2}^{r}•(-1)^{7-r}$•${x}^{\frac{7r-7}{2}}$,
由$\frac{7r-7}{2}$=0,得r=1,
∴常數(shù)項(xiàng)是T2=${C}_{7}^{1}•2•(-1)^{6}$=14.
故答案為:14.
點(diǎn)評(píng) 本題考查二項(xiàng)展開(kāi)式的常數(shù)項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)式定理的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 720種 | B. | 240種 | C. | 120種 | D. | 96種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,1] | B. | [0,1) | C. | [0,1)∪(1,4] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8 | B. | -4 | C. | 1 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=x2-x | C. | f(x)=-$\frac{1}{x+1}$ | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com