4.已知a,b,c為△ABC三個內(nèi)角所對的邊.
(1)若滿足條件asinA=bsinB.求證:△ABC為等腰三角形.
(2)若a+b=ab,邊長c=2,角C=$\frac{π}{3}$,求△ABC的面積.

分析 (1)利用正弦定理真假證明即可.
(2)利用余弦定理以及已知條件求出ab的值,然后求解三角形的面積.

解答 解:(1)證明:a,b,c為△ABC三個內(nèi)角所對的邊.件asinA=bsinB.
由條件由正弦定理得a=b,
所以是等腰三角形.
(2):a+b=ab,邊長c=2,角C=$\frac{π}{3}$,
由余弦定理得:4=a2+b2-2abcosC=(ab)2-3ab
ab=4或ab=-1(舍去),
所以$S=\frac{1}{2}absinC=\sqrt{3}$.

點評 本題考查正弦定理以及余弦定理的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax3+3x2+2,若f′(-1)=3,則a的值是(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.f(x)=3tanx的最小正周期為( 。
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f'(x)g(x)+f(x)g'(x)>0,且g(-1)=0,則不等式f(x)g(x)>0的解集是( 。
A.(-1,0)∪(0,1)B.(-∞,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.為了響應(yīng)國家號召,某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù)如表所示:
x3456
y2.5344.5
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為y=0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計相應(yīng)的生產(chǎn)能耗為5.25噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)的定義域為[1,+∞),且f(x)=$\left\{\begin{array}{l}{1-|2x-3|,1≤x<2}\\{\frac{1}{2}f(\frac{1}{2}x),x≥2}\end{array}\right.$,則函數(shù)y=2xf(x)-3在區(qū)間 (1,2017)上的零點個數(shù)為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,其前n項和Sn滿足關(guān)系式3t•Sn-(2t+3)•Sn-1=3t(t>0,n=2,3,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f($\frac{1}{_{n-1}}$),n=(2,3,…),求bn;
(3)求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面說法中不正確的命題個數(shù)為是(  )
?①命題“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”;
?②若“p∨q”為假命題,則p,q均為假命題;
?③“mn>0”是“方程mx2+ny2=1表示橢圓”的充分不必要條件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知空間中兩點A(x,2.3)和B(5,4.7)的距離為6,則實數(shù)x的值為9或1.

查看答案和解析>>

同步練習(xí)冊答案