分析 根據拋物線方程可求得焦點坐標和準線方程,設過F的直線方程,與拋物線方程聯(lián)立,整理后,設A(x1,y1),B(x2,y2)根據韋達定理可求得x1x2的值,又根據拋物線定義可知|AF|=x1+1,|BF|=x2+1代入 $\frac{1}{|AF|}$+$\frac{1}{|BF|}$可得其值為1,再由|AF|=4,即可得到|BF|.
解答 解:易知F坐標(1,0)準線方程為x=-1.
設過F點直線方程為y=k(x-1)
代入拋物線方程,得 k2(x-1)2=4x.
化簡后為:k2x2-(2k2+4)x+k2=0.
設A(x1,y1),B(x2,y2)
則有x1x2=1
根據拋物線性質可知,|AF|=x1+1,|BF|=x2+1
∴$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{{x}_{1}+1+{x}_{2}+1}{({x}_{1}+1)({x}_{2}+1)}$=1,
又由$|{AF}|=\frac{4}{3}$,可得$\frac{3}{4}+\frac{1}{|BF|}=1$,則|BF|=4..
故答案為:4
點評 本題主要考查拋物線的應用和拋物線定義.對于過拋物線焦點的直線與拋物線關系,常用拋物線的定義來解決.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞$\frac{1}{3}$]∪[3,+∞) | B. | [$\frac{1}{3}$,3] | C. | [$\frac{1}{3}$,1] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{28}{3}π$ | B. | 4π | C. | $\frac{10}{3}π$ | D. | $\frac{2}{3}+\frac{8}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 0 | 1 | 3 | 4 |
y | 22 | 35 | 48 | 75 |
A. | 22 | B. | 26 | C. | 33.6 | D. | 19.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{3π}{4}$或$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M=N | B. | M?N | C. | M?N | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com