1.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$),x∈R.
(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若x=x0(x0∈[0,$\frac{π}{2}$])為f(x)的一個零點,求sin2x0的值.

分析 (Ⅰ)利用二倍角和輔助角公式化簡函數(shù)為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,結(jié)合正弦函數(shù)的性質(zhì)可得值域
(Ⅱ)根據(jù)x0∈[0,$\frac{π}{2}$],求出內(nèi)層函數(shù)的范圍,求出零點f(x0)的值,即可求sin2x0的值.

解答 解:函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$),x∈R
化簡可得:f(x)=$\frac{1}{2}$$-\frac{1}{2}$cos2x+$\sqrt{3}$sin2x+sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$),
=$\frac{1}{2}$-$\frac{1}{2}$cos2x+$\sqrt{3}$sin2x+sin-$\frac{1}{2}$cos2x
=$\sqrt{3}$sin2x-cos2x+$\frac{1}{2}$
=2sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$.
(Ⅰ)∴f(x)的最小正周期T=$\frac{2π}{2}=π$
值域為:[$-\frac{3}{2}$,$\frac{5}{2}$].
(Ⅱ)令f(x0)=0,可得sin(2x0-$\frac{π}{6}$)=$-\frac{1}{4}$<0
∵x0∈[0,$\frac{π}{2}$],
∴2x0-$\frac{π}{6}$∈[-$\frac{π}{6}$,0],
cos(2x0-$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$
那么:sin2x0=sin[(2x0-$\frac{π}{6}$)-$\frac{π}{6}$]=sin(2x0-$\frac{π}{6}$)cos($\frac{π}{6}$)-cos(2x0-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{15}-\sqrt{3}}{8}$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在[0,+∞)上的函數(shù)f(x),當(dāng)x∈[0,2]時,f(x)=4(|x-1|-1),且對任意實數(shù) x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且僅有三個實根,則實數(shù)a的取值范圍是(  )
A.[$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{10}$,$\frac{1}{2}$)D.[$\frac{1}{10}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x2-x)ex
(1)求y=f(x)在點(1,f(1))處的切線方程y=g(x),并證明f(x)≥g(x)
(2)若方程f(x)=m(m∈R)有兩個正實數(shù)根x1,x2,求證:|x1-x2|<$\frac{m}{e}$+m+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x)2≤x≤10}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4,則$\frac{({x}_{3}-1)•({x}_{4}-1)}{{x}_{1}•{x}_{2}}$的取值范圍是( 。
A.(15,25)B.(20,32)C.(8,24)D.(9,21)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,則△ABC的面積為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平面向量$\overrightarrow a$和$\overrightarrow b$的夾角為60°,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,則$|\overrightarrow a+2\overrightarrow b|$=( 。
A.20B.12C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若對任意的x∈D,均有g(shù)(x)≤f(x)≤h(x)成立,則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“任性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2-2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“任性函數(shù)”,則實數(shù)k的取值范圍是[e-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出下列命題:
(1)若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
(2)若cosx=-$\frac{2}{3},x∈[{0,π}]$,則x值為:π-arc$cos\frac{2}{3}$.
(3)若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;
(4)$\overrightarrow{a}$=$\overrightarrow$⇒|$\overrightarrow{a}$|=|$\overrightarrow$|,$\overrightarrow{a}$∥$\overrightarrow$
其中真命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x>1,y>1,且lgx,2,lgy成等差數(shù)列,則x+y有( 。
A.最小值為20B.最小值為200C.最大值為20D.最大值為200

查看答案和解析>>

同步練習(xí)冊答案