14.如圖,邊長(zhǎng)為2的正方形 A BCD的頂點(diǎn) A,B分別在兩條互相垂直的射線 OP,OQ上滑動(dòng),則$\overrightarrow{{O}C}•\overrightarrow{{O}D}$的最大值為(  )
A.2B.4C.6D.8

分析 令∠OAB=θ,由邊長(zhǎng)為2的正方形ABCD的頂點(diǎn)A、B分別在x軸、y軸正半軸上,可得出D,C的坐標(biāo),由此可以表示出兩個(gè)向量,算出它們的數(shù)量積,通過(guò)三角函數(shù)的最值求解即可.

解答 解:如圖:令OP為x軸,OQ為y軸,∠OAB=θ,由于AB=2故0A=2cosθ,OB=2sinθ,
如圖∠DAX=$\frac{π}{2}$-θ,AB=2,故xD=2cosθ+2cos($\frac{π}{2}$-θ)=2cosθ+2sinθ,yD=2sin($\frac{π}{2}$-θ)=2cosθ
故$\overrightarrow{OD}$=2(cosθ+sinθ,cosθ)
同理可求得C(2sinθ,2cosθ+2sinθ),即$\overrightarrow{OC}$=2(sinθ,cosθ+sinθ),
∴$\overrightarrow{OD}$•$\overrightarrow{OC}$=4(cosθ+sinθ,cosθ)•(sinθ,cosθ+sinθ)=4+4sin2θ,
$\overrightarrow{OD}$•$\overrightarrow{OC}$的最大值是8.
故選:D.

點(diǎn)評(píng) 本題考查向量在幾何中的應(yīng)用,設(shè)角引入坐標(biāo)是解題的關(guān)鍵,由于向量的運(yùn)算與坐標(biāo)關(guān)系密切,所以在研究此類(lèi)題時(shí)應(yīng)該想到設(shè)角來(lái)表示點(diǎn)的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=xlnx
(1)當(dāng)x∈(0,e](e是自然常數(shù))時(shí)求f(x)的極小值;
(2)求f(x)在點(diǎn)(e,f(e))(e是自然常數(shù))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.
(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.判斷下列命題是全稱(chēng)命題還是特稱(chēng)命題,并用符號(hào)“?”或“?”表示下列命題.
(1)自然數(shù)的平方大于或等于零;
(2)圓x2+y2=1上存在一個(gè)點(diǎn)到直線y=x+1的距離等于圓的半徑;
(3)有的函數(shù)既是奇函數(shù)又是增函數(shù);
(4)對(duì)于數(shù)列{$\frac{n}{n+1}$},總存在正整數(shù)n0,使得a${\;}_{{n}_{0}}$與1之差的絕對(duì)值小于0.01.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知全集U=R,集合$A=\{y|y=ln(x+1),x>0\},B=\{x|\frac{1}{2}≤{2^x}≤8\}$.
(1)求(∁UA)∪B;
(2)C={x|a-1≤x≤2a},若A∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.有一段“三段論”,推理是這樣的:指數(shù)函數(shù)y=ax(a>0,a≠1)是增函數(shù),因?yàn)?y={(\frac{1}{2})^x}$是指數(shù)函數(shù),所以$y={(\frac{1}{2})^x}$是增函數(shù),以上推理中(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.2C${\;}_{9}^{0}$-C${\;}_{9}^{1}$+2C${\;}_{9}^{2}$-C${\;}_{9}^{3}$+2C${\;}_{9}^{4}$-C${\;}_{9}^{5}$+2C${\;}_{9}^{6}$-C${\;}_{9}^{7}$+2C${\;}_{9}^{8}$-C${\;}_{9}^{9}$=256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a-bi為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知棱長(zhǎng)都相等正四棱錐的側(cè)面積為16$\sqrt{3}$,則該正四棱錐內(nèi)切球的表面積為(32-16$\sqrt{3}$)π.

查看答案和解析>>

同步練習(xí)冊(cè)答案