19.有一段“三段論”,推理是這樣的:指數(shù)函數(shù)y=ax(a>0,a≠1)是增函數(shù),因?yàn)?y={(\frac{1}{2})^x}$是指數(shù)函數(shù),所以$y={(\frac{1}{2})^x}$是增函數(shù),以上推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

分析 指數(shù)函數(shù)y=ax(a>0且a≠1)是R上的增函數(shù),這個(gè)說(shuō)法是錯(cuò)誤的,要根據(jù)所給的底數(shù)的取值不同分類說(shuō)出函數(shù)的不同的單調(diào)性,即大前提是錯(cuò)誤的.

解答 解:指數(shù)函數(shù)y=ax(a>0且a≠1)是R上的增函數(shù),
這個(gè)說(shuō)法是錯(cuò)誤的,要根據(jù)所給的底數(shù)的取值不同分類說(shuō)出函數(shù)的不同的單調(diào)性,
大前提是錯(cuò)誤的,
∴得到的結(jié)論是錯(cuò)誤的,
故選A.

點(diǎn)評(píng) 本題考查演繹推理的基本方法,解題的關(guān)鍵是理解演繹推理的三段論原理,在大前提和小前提中,若有一個(gè)說(shuō)法是錯(cuò)誤的,則得到的結(jié)論就是錯(cuò)誤的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是某個(gè)幾何體的三視圖,則該幾何體的體積是( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=1+lnx-$\frac{k(x-2)}{x}$,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若k=5,求f(x)零點(diǎn)的個(gè)數(shù);
(3)若k為整數(shù),且當(dāng)x>2時(shí),f(x)>0恒成立,求k的最大值.(參考數(shù)據(jù)ln8=2.08,ln9=2.20,ln10=2.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1有共同的漸近線,且過(guò)點(diǎn)P(8,12)的雙曲線方程為$\frac{{y}^{2}}{108}-\frac{{x}^{2}}{192}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,邊長(zhǎng)為2的正方形 A BCD的頂點(diǎn) A,B分別在兩條互相垂直的射線 OP,OQ上滑動(dòng),則$\overrightarrow{{O}C}•\overrightarrow{{O}D}$的最大值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.觀察等式:$\frac{sin30°+sin90°}{cos30°+cos90°}$=$\sqrt{3}$,$\frac{sin15°+sin75°}{cos15°+cos75°}$=1,$\frac{sin20°+sin40°}{cos20°+cos40°}$=$\frac{\sqrt{3}}{3}$照此規(guī)律,對(duì)于一般的角α,β,有等式$\frac{sinα+sinβ}{cosα+cosβ}$=tan$\frac{α+β}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知α=-1090°.
(1)把α寫(xiě)成β+k•360°(k∈Z,0°≤β<360°)的形式,并指出它是第幾象限角
(2)寫(xiě)出與α終邊相同的角θ構(gòu)成的集合S,并把S中適合不等式-360°≤θ<360°的元素θ寫(xiě)出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且$f(1)=\frac{1}{2}$,不等式$f'(x)≤\frac{1}{x}+x$的解集為(0,1],則不等式$\frac{f(x)-lnx}{x^2}>\frac{1}{2}$的解集為( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25名男同學(xué),15名女同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫(xiě)出計(jì)算式即可,不
必計(jì)算出結(jié)果)
(2)隨機(jī)抽取8位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是:60,65,70,75,80,85,90,95,物理分?jǐn)?shù)從
小到大排序是:72,77,80,84,88,90,93,95.
①若規(guī)定85分以上(包括85分)為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均
為優(yōu)秀的概率;
②若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如表:
學(xué)生編號(hào)12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
根據(jù)上表數(shù)據(jù),由變量y與x的相關(guān)系數(shù)可知物理成績(jī)y與數(shù)學(xué)成績(jī)x之間具有較強(qiáng)的線性相關(guān)關(guān)系,現(xiàn)求y與x的線性回歸方程(系數(shù)精確到0.01).
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=bx+a,其中對(duì)應(yīng)的回歸估計(jì)值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,
參考數(shù)據(jù):$\overline x=77.5$,$\overline y=84.875$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$≈1050,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$≈688,.

查看答案和解析>>

同步練習(xí)冊(cè)答案