【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且btanB= .
(1)求角B的值;
(2)若△ABC的面積為 ,a+c=8,求邊b.
【答案】
(1)解:∵△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且btanB= ,
∴由正弦定理得:
sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,
∵B∈(0,π),∴sinB≠0,∴tanB= ,
∵B∈(0,π),∴B=
(2)解:∵△ABC的面積為 ,∴ = ,
∴ ,
∵a+c=8,
∴在△ABC中,由余弦定理得:
b2=a2+c2﹣2accosB=(a+c)2﹣3ac=36,
∴b=6
【解析】(1)由正弦定理得:sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,求出tanB= ,由此求出B= .(2)由△ABC的面積為 ,得到 ,再由a+c=8,利用余弦定理能求出b的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為 ,則 的取值范圍為( )
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a、b表示兩條直線,α、β表示兩個(gè)平面,則下列命題正確的是 . (填寫(xiě)所有正確命題的序號(hào)) ①若a∥b,a∥α,則b∥α; ②若a∥b,aα,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐館一天中要購(gòu)買A,B兩種蔬菜每斤的價(jià)格分別為2元和3元,根據(jù)需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購(gòu)買這兩種蔬菜的總費(fèi)用不能超過(guò)60元.
(1)寫(xiě)出一天中A種蔬菜購(gòu)買的數(shù)量x和B種蔬菜購(gòu)買的數(shù)量y之間的不等式組;
(2)在下面給定的坐標(biāo)系中畫(huà)出(1)中不等式組表示的平面區(qū)域(用陰影表示),并求出它的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式(x+5)(3﹣2x)≤6的解集是( )
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點(diǎn).
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足下列條件的有兩個(gè)的是( )
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com