6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$.
(1)求橢圓C的方程;
(2)A、B是橢圓的左右頂點(diǎn),P(xP,yP)是橢圓上任意一點(diǎn),橢圓在P點(diǎn)處的切線與過A、B且與x軸垂直的直線分別交于C、D兩點(diǎn),直線AD、BC交于Q(xQ,yQ),是否存在實(shí)數(shù)λ,使xP=λxQ恒成立,并說明理由.

分析 (1)由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$,列出方程組,求出a,b,由此能求出橢圓C的方程.
(2)設(shè)切線方程為y=kx+m,與橢圓聯(lián)立消元得(2+3k2)x2+6kmx+3m2-6=0,由此利用根的判別式、韋達(dá)定理、直線方程,組合已知條件能求出存在λ=1,使xP=λxQ恒成立.

解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$,
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{2ab=2\sqrt{6}}\end{array}\right.$,解得a=$\sqrt{3}$,b=$\sqrt{2}$,
故橢圓C的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.…(4分)
(2)設(shè)切線方程為y=kx+m,
與橢圓聯(lián)立消元得(2+3k2)x2+6kmx+3m2-6=0,
∵切線與橢圓相切,∴△=36k2m2-4(2+3k2)(3m2-6)=0,
化簡(jiǎn)得m2=2+3k2,…(6分)且${x}_{P}=-\frac{6km}{2(2+3{k}^{2})}$=-$\frac{3k}{m}$,…(8分)
又直線AD方程為y=$\frac{m+\sqrt{3}k}{2\sqrt{3}}$(x+$\sqrt{3}$),
直線BC方程為y=$\frac{m-\sqrt{3}k}{2-\sqrt{3}}$(x-$\sqrt{3}$),
解得xQ=-$\frac{3k}{m}$,…(10分)
∴存在λ=1,使xP=λxQ恒成立.…(12分)

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查滿足條件的實(shí)數(shù)值的求法,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,sin(α+β)=-$\frac{4}{5}$,則sinβ=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=2sin2(x+$\frac{3π}{2}$)-1是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為$\frac{π}{2}$的偶函數(shù)D.最小正周期為$\frac{π}{2}$的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)F1是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點(diǎn),M是C上一點(diǎn),且MF1與x軸垂直,若$|{M{F_1}}|=\frac{3}{2}$,橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)以橢圓C的左頂點(diǎn)A為Rt△ABD的直角頂點(diǎn),邊AB,AD與橢圓C交于B,D兩點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系xOy中,已知角α的頂點(diǎn)和點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,終邊上一點(diǎn)M坐標(biāo)為(-1,$\sqrt{3}$),則tan(α+$\frac{π}{4}$)=$\sqrt{3}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為吸引顧客,某公司在商場(chǎng)舉辦電子游戲活動(dòng).對(duì)于A,B兩種游戲,每種游戲玩一次均會(huì)出現(xiàn)兩種結(jié)果,而且每次游戲的結(jié)果相互獨(dú)立,具體規(guī)則如下:玩一次游戲A,若綠燈閃亮,獲得50分,若綠燈不閃亮,則扣除10分,綠燈閃亮的概率為$\frac{1}{2}$;玩一次游戲B,若出現(xiàn)音樂,獲得60分,若沒有出現(xiàn)音樂,則扣除20分(即獲得-20分),出現(xiàn)音樂的概率為$\frac{2}{5}$.玩多次游戲后累計(jì)積分達(dá)到130分可以兌換獎(jiǎng)品.
(1)記X為玩游戲A和B各一次所得的總分,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)記某人玩5次游戲B,求該人能兌換獎(jiǎng)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四面體ABCD中,平面ABC⊥平面BCD,DC⊥BC,$AB=\sqrt{3}$,BC=2,AC=1.
(1)求證:AB⊥AD;
(2)設(shè)E是BD的中點(diǎn),若直線CE與平面ACD的夾角為30°,求四面體ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{5}{3}$,則其漸近線方程為( 。
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.中國(guó)古代數(shù)學(xué)經(jīng)典<<九章算術(shù)>>中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑(biē nào).若三棱錐P-ABC為鱉臑,且PA⊥平面ABC,PA=AB=2,又該鱉臑的外接球的表面積為24π,則該鱉臑的體積為$\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案