已知函數(shù)f(x)=-x+3x+9x+a
⑴求f(x)的單調(diào)遞減區(qū)間;⑵若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值。

(1)遞減區(qū)間:(-,-1),(3,+
(2)最小值是-7

解析試題分析:解:(I)f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1或x>3,所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-1),(3,+∞)
(II)因?yàn)閒(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(2)>f(-2).因?yàn)樵冢?1,3)上f′(x)>0,所以f(x)在[-1,2]上單調(diào)遞增,又由于f(x)在[-2,-1]上單調(diào)遞減,因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,即函數(shù)f(x)在區(qū)間[-2,2]上的最小值為-7
考點(diǎn):導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性
點(diǎn)評(píng):本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.以及在閉區(qū)間上的最值問(wèn)題等基礎(chǔ)知識(shí),同時(shí)考查了分析與解決問(wèn)題的綜合能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn),且點(diǎn)處的切線方程為在
(1)求函數(shù)的解析式;            (2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(2)當(dāng)時(shí),比較與1的大小.
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng) 時(shí),,且
(1)求的值,(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若為定義域上的單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)當(dāng)時(shí),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù))是實(shí)數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)單調(diào)增區(qū)間;
(3)若存在,使得是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若對(duì)所有恒成立,求實(shí)數(shù)n的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案