給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過點(diǎn)F的直線l與C相交于A、B兩點(diǎn)

(1)設(shè)l的斜率為1,求夾角的大小;

(Ⅱ)設(shè),若λ∈[4,9],求l在y軸上截距的變化范圍.


  (1)證法一:因?yàn)锳、B分別是直線l:y= ex+a與x軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是(-)(0,a).

  由

所以點(diǎn)M的坐標(biāo)是(-c,),由得(-c+)=λ(,a).

  即

解法二:因?yàn)镻F1⊥l,所以,∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,設(shè)點(diǎn)P的坐標(biāo)是(x0,y0),

解得

由|PF1|=|FlF2|得=4c2,

兩邊同時除以4a2,化簡得=e2.從而e2=

于是λ=l-e2=.即當(dāng)λ=時,△PF1F2為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


若直線不經(jīng)過第一象限,則的取值范圍是              __________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)=kx+2,不等式|f(x)|<6的解集為(-1,2)試求不等式的log的解集。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=ax3x2cxd(ac,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a,c,d的值;

(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0;

(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,求出實(shí)數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為  (    )

  A.30°    B.45°    C.60°    D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,直線y= x嚴(yán)與拋物線y=x2-4交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于點(diǎn)Q.

(1)求點(diǎn)Q的坐標(biāo)

(2)當(dāng)P為拋物線上位于線段AB下方(含點(diǎn)A、B)的動點(diǎn)時,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


雙曲線2x2-y2=8的實(shí)軸長是(  )

A.2  B.2 C.4 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系xOy中,點(diǎn)P(a,b)(a>b>0)為動點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓=1的左、右焦點(diǎn),已知△F1PF2為等腰三角形.

(1)求橢圓的離心率e;

(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),M是直線PF2上的點(diǎn),滿足·=-2,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


復(fù)數(shù)的值是    (   )

A.-16           B.16

C.-           D.8-8

查看答案和解析>>

同步練習(xí)冊答案