分析 (1)曲線C1的參數(shù)方程$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t為參數(shù)),利用cos2t+sin2t=1消去參數(shù)t化為普通方程.把x=ρcosθ,y=ρsinθ代入可得極坐標方程.
(2)曲線C2的極坐標方程為ρ=1,化為直角坐標方程:x2+y2=1.聯(lián)立可得交點坐標,再化為極坐標即可得出.
解答 解:(1)曲線C1的參數(shù)方程$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t為參數(shù)),消去參數(shù)t化為普通方程:(x-1)2+(y-1)2=3,展開為:x2+y2-2x-2y-1=0.
把x=ρcosθ,y=ρsinθ代入可得極坐標方程:ρ2-2ρcosθ-2ρsinθ-1=0.
(2)曲線C2的極坐標方程為ρ=1,化為直角坐標方程:x2+y2=1.
聯(lián)立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{{x}^{2}+{y}^{2}-2x-2y-1=0}\end{array}\right.$,j解得$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
化為極坐標$(1,\frac{3π}{4})$,$(1,\frac{7π}{4})$.
∴C1與C2交點的極坐標分別為:$(1,\frac{3π}{4})$,$(1,\frac{7π}{4})$.
點評 本題考查了直角坐標與極坐標的互化、參數(shù)方程化為普通方程、曲線的交點,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com