A. | (-1,1] | B. | (-∞,1) | C. | [1,3) | D. | (1,+∞) |
分析 由真數(shù)大于0求出函數(shù)的定義域,進(jìn)一步求出內(nèi)函數(shù)在定義域內(nèi)的減區(qū)間,再由復(fù)合函數(shù)的單調(diào)性得答案.
解答 解:令t=-x2+2x+3,
由-x2+2x+3>0,得-1<x<3.
函數(shù)t=-x2+2x+3的對(duì)稱軸方程為x=1,
二次函數(shù)t=-x2+2x+3在[1,3)上為減函數(shù),
而函數(shù)y=$lo{g}_{\frac{1}{3}}t$為定義域內(nèi)的減函數(shù),
∴函數(shù)$y={log_{\frac{1}{3}}}({-{x^2}+2x+3})$的單調(diào)增區(qū)間是[1,3).
故選:C.
點(diǎn)評(píng) 本題考查復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | q | B. | (?p)∧(?q) | C. | p | D. | (?p)∨(?q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com