19.拋物線y2=2px(p>0)與過焦點(diǎn)且垂直于其對稱軸的直線所圍成的封閉圖形面積是6,則p=3.

分析 直線l過拋物線y2=2px(p>0)的焦點(diǎn)且與該拋物線的軸垂直,則拋物線與直線的交點(diǎn)為($\frac{p}{2}$,±p),y2=2px(p>0)⇒x=$\frac{{y}^{2}}{2p}$,根據(jù)定積分的幾何意義得2${∫}_{0}^{p}$($\frac{{y}^{2}}{2p}$)dy=p2-6,即可求p.

解答 解:直線l過拋物線y2=2px(p>0)的焦點(diǎn)且與該拋物線的軸垂直,
則拋物線與直線的交點(diǎn)為($\frac{p}{2}$,±p),
y2=2px(p>0)⇒x=$\frac{{y}^{2}}{2p}$,根據(jù)定積分的幾何意義得2${∫}_{0}^{p}$($\frac{{y}^{2}}{2p}$)dy=p2-6,
∵($\frac{{y}^{3}}{6p}$)′=$\frac{{y}^{2}}{2p}$,
∴2×$\frac{{p}^{2}}{6}$=p2-6,
解得p=3,
故答案為:3.

點(diǎn)評 本題考查了微積分的幾何性質(zhì),及定積分定理的應(yīng)用,屬于中檔題,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)F1、F2分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓C的左頂點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),且|AB|=$\sqrt{3}$,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點(diǎn),且OP⊥OQ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$\frac{1-i}{1+i}$=( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計(jì)數(shù)的.[附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(2)試估計(jì)該公司投入4萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元)12345
銷售收益y(單位:萬元)2327
由表中的數(shù)據(jù)顯示,x與y之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出y關(guān)于x的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$y={log_{\frac{1}{3}}}({-{x^2}+2x+3})$的單調(diào)增區(qū)間是(  )
A.(-1,1]B.(-∞,1)C.[1,3)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等差數(shù)列{an}為各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,若a1=1,$\sqrt{{S}_{3}}$=a2,則a8=(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)在($\frac{π}{6}$,$\frac{π}{2}$)上單調(diào),且滿足f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,則ω=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)F(3,0)是雙曲線3x2-my2=3m(m>0)的一個(gè)焦點(diǎn),則此雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sinx-x,則不等式f(x+2)+f(1-2x)<0的解集是( 。
A.$(-∞,-\frac{1}{3})$B.$(-\frac{1}{3},+∞)$C.(3,+∞)D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊答案