3.如圖,邊長為4的正方形ABCD中,AC與BD交于點(diǎn)O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,則$\overrightarrow{AE}$•$\overrightarrow{OF}$等于( 。
A.-3B.3C.-5D.5

分析 根據(jù)題意,用正方形的邊表示向量$\overrightarrow{AE}$、$\overrightarrow{OF}$,求出$\overrightarrow{AE}$•$\overrightarrow{OF}$即可.

解答 解:邊長為4的正方形ABCD中,AC與BD交于點(diǎn)O,
$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,
∴$\overrightarrow{AE}$=$\frac{1}{2}$($\overrightarrow{AO}$+$\overrightarrow{AD}$)=$\frac{1}{2}$($\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AD}$)+$\overrightarrow{AD}$)=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$,
$\overrightarrow{OF}$=$\overrightarrow{OC}$+$\overrightarrow{CF}$=$\overrightarrow{AO}$+$\frac{1}{4}$$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AD}$)-$\frac{1}{4}$$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AD}$,
∴$\overrightarrow{AE}$•$\overrightarrow{OF}$=($\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$)•($\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AD}$)
=$\frac{1}{8}$${\overrightarrow{AB}}^{2}$+$\frac{7}{16}$$\overrightarrow{AB}$•$\overrightarrow{AD}$+$\frac{3}{16}$${\overrightarrow{AD}}^{2}$
=$\frac{1}{8}$×42+$\frac{7}{16}$×0+$\frac{3}{16}$×42=5.
故選:D.

點(diǎn)評 本題考查了平面向量的線性運(yùn)算與數(shù)量積運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x∈R,符號(hào)[x]表示不超過x的最大整數(shù),f(x)=$\left\{\begin{array}{l}{[x],x≤0}\\{\frac{1}{x},x>0}\end{array}\right.$,則使方程$\frac{f(x)}{x}$=m恰有三個(gè)實(shí)根的實(shí)數(shù)m的取值范圍是(  )
A.($\frac{1}{2}$,$\frac{2}{3}$)B.(1,$\frac{3}{2}$)C.($\frac{4}{3}$,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=$\left\{\begin{array}{l}{x^3}+e,x≤0\\ \frac{e^x}{x},x>0\end{array}$,則方程f(f(x))=$\frac{e^3}{3}$的根的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.幾個(gè)月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題,然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?br />為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如表:
年齡[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受訪人數(shù)56159105
支持發(fā)展
共享單車人數(shù)
4512973
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;
年齡低于35歲年齡不低于35歲合計(jì)
支持
不支持
合計(jì)
(2)若對年齡在[15,20)[20,25)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC的三個(gè)內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實(shí)數(shù)m的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}x+y-2≤0\\ x-y+4≥0\\ y≥1\end{array}\right.$,則|$\sqrt{3}x$-y|的最大值為$3\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點(diǎn)B作直線l∥PD,Q為直線l上一動(dòng)點(diǎn).
(1)求證:QP⊥AC;
(2)當(dāng)二面角Q-AC-P的大小為120°時(shí),求QB的長;
(3)在(2)的條件下,求三棱錐Q-ACP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知α∈(0,$\frac{π}{2}$),cos(α+$\frac{π}{3}$)=-$\frac{2}{3}$,則cosα=$\frac{{\sqrt{15}-2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a,b∈R,i是虛數(shù)單位,若a+i=1-bi,則(a+bi)8=16.

查看答案和解析>>

同步練習(xí)冊答案