13.設(shè)集合$A=\left\{{x\left|{\frac{2x+1}{x-2}≤0}\right.}\right\}$,B={x|x<1},則A∪B=(  )
A.$[{-\frac{1}{2},1})$B.(-1,1)∪(1,2)C.(-∞,2)D.$[{-\frac{1}{2},2})$

分析 求出集合A,取A、B的并集即可.

解答 解:$A=\left\{{x\left|{\frac{2x+1}{x-2}≤0}\right.}\right\}$={x|-$\frac{1}{2}$≤x<2},B={x|x<1},
則A∪B=(-∞,2),
故選:C.

點評 本題考查了集合的并集的運算,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若4x=9y=6,則$\frac{1}{x}+\frac{1}{y}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}中,a2+a3=9,a4+a5=21,那么它的公差是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤5\\ 2x+y≤4\\ x≥0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=3x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖程序,輸出S的值為( 。
A.$\frac{1007}{2015}$B.$\frac{1008}{2017}$C.$\frac{2016}{2017}$D.$\frac{2015}{4032}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U=R,集合A={x|2<x<9},B={x|-2≤x≤5}.
(1)求A∩B;B∪(∁UA);
(2)已知集合C={x|a≤x≤2-a},若C∪(∁UB)=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\sqrt{2}$sinωx+$\sqrt{2}$cosωx(ω>0),在區(qū)間(-$\frac{π}{3}$,$\frac{π}{4}$)上單調(diào)遞增,則ω的取值范圍為( 。
A.(0,1]B.[1,2)C.[$\frac{1}{3}$,2)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案