10.給出下列結論:
①若$\overrightarrow{AD}$=$\overrightarrow{BC}$,則ABCD是平行四邊形;
②cos$\frac{2}{7}$π<sin$\frac{5}{7}$π<tan$\frac{2}{7}$π;
③若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$;
④若$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$=$\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$,則$\overrightarrow a$=$\overrightarrow b$.
則以上正確結論的個數(shù)為( 。
A.0個B.1個C.2個D.3個

分析 ①特殊情況當四點不在同一條直線上時才成立;
②根據(jù)三角函數(shù)線可判斷正確;
③考慮當$\overrightarrow b$為零向量時的特殊情況;
④若$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$=$\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$,則$\overrightarrow a$與$\overrightarrow b$為同向的共線向量,比如$\overrightarrow a$=3$\overrightarrow b$也成立等.

解答 解:①若$\overrightarrow{AD}$=$\overrightarrow{BC}$,當四點不在同一條直線上時,才有ABCD是平行四邊形,故錯誤;
②cos$\frac{2}{7}$π<sin$\frac{5}{7}$π<tan$\frac{2}{7}$π
sin$\frac{5}{7}$π=sin$\frac{2}{7}$π>sin$\frac{π}{4}$,根據(jù)三角函數(shù)線可判斷正確;
③若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,當$\overrightarrow b$為零向量時,不一定$\overrightarrow a$∥$\overrightarrow c$,故錯誤;
④若$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$=$\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$,則$\overrightarrow a$與$\overrightarrow b$為同向的共線向量,但不一定相等,故錯誤.
故選B.

點評 考查了向量共線的定義和零向量與任意向量都共線和三角函數(shù)線的知識,屬于基礎題型,應熟練掌握.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在底面為正方形的四棱錐P-ABCD中,側棱PD⊥底面ABCD,PD=DC,點E是線段PC的中點.
(1)求異面直線AP與BE所成角的大;
(2)若點F在線段PB上,使得二面角F-DE-B的正弦值為$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.等差數(shù)列{an}的前n項和為Sn,若a2+a7-a9=8,a12-a5=4,則S13等于(  )
A.152B.154C.156D.158

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求下列函數(shù)的定義域:
(1)f(x)=$\frac{\sqrt{5-x}}{|x|-3}$;
(2)y=$\sqrt{x-1}$+$\sqrt{2-x}$;
(3)y=$\frac{(x+1)^{0}}{\sqrt{x+2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=ax|log2x|-1有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.(1,10)B.(1,+∞)C.(0,1)D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=Asin(2ωx+ϕ)+k(A>0,ω>0,ϕ∈[-$\frac{π}{2},\frac{π}{2}}$])的最小正周期為$\frac{π}{2}$,函數(shù)的值域為[-$\frac{1}{2},\frac{3}{2}}$],且當x=$\frac{π}{6}$時,函數(shù)f(x)取得最大值$\frac{3}{2}$.
(1)求f(x)的表達式,并寫出函數(shù)f(x)的單調遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{3}}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知銳角三角形的邊長分別2、3、x,則x的取值范圍是( 。
A.($\sqrt{5}$,$\sqrt{13}$)B.(1,5)C.(1,$\sqrt{5}$)D.($\sqrt{13}$,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,且公差d>0,數(shù)列{bn}為等比數(shù)列,若a1=b1>0,a5=b5,則( 。
A.a9>b9B.a9=b9
C.a9<b9D.a9與b9大小無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$\overrightarrow a$、$\overrightarrow$是兩個不共線的非零向量,若|$\overrightarrow a$|=|$\overrightarrow b$|=1且$\overrightarrow a$與$\overrightarrow b$夾角為120°,求|$\overrightarrow a$-$\overrightarrow b$|的值?

查看答案和解析>>

同步練習冊答案