分析 利用二項展開式的通項公式,二項式系數(shù)的性質,求得第10項、常數(shù)項、以及系數(shù)的絕對值最大的項.
解答 解 由題意得22n-2n=992,解得n=5,
∵(2x-$\frac{1}{x}$)2n的展開式的通項公式為 ${T_{r+1}}=C_{10}^r{(2x)^{10-r}}{(-\frac{1}{x})^r}=C_{10}^r{2^{10-r}}{(-1)^r}{x^{10-2r}}$,
(1 )令r=9,可得它的展開式中第10項,即T10=-20x-8 .
(2)令10-2r=0,求得r=5,可得常數(shù)項為第6項,
T6=-${C}_{10}^{5}$•25=-8 064.
(3)設第r+1項的系數(shù)的絕對值最大,即Tr+1=${C}_{10}^{r}$•210-r 最大,
∴$\left\{\begin{array}{l}{{C}_{10}^{r}{•2}^{10-r}{≥C}_{10}^{r-1}{•2}^{11-r}}\\{{C}_{10}^{r}{•2}^{10-r}{≥C}_{10}^{r+1}{•2}^{9-r}}\end{array}\right.$,即$\left\{\begin{array}{l}{11-r≥2r}\\{2(r+1)≥10-r}\end{array}\right.$,
∴$\frac{8}{3}$≤r≤$\frac{11}{3}$,∴r=3,故系數(shù)的絕對值最大的是第4項,
T4=(-1)3•${C}_{10}^{3}$•27•x4=-15 360x4.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 10 | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5}{2}$i | B. | -$\frac{5}{2}$ | C. | $\frac{5}{2}$i | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<2} | B. | {x|x≤2} | C. | {x|2<x≤3} | D. | {x|2≤x<3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com