13.設(shè)曲線f(x)=Asin(x+θ)(A>0)的一條對稱軸為$x=\frac{π}{5}$,則曲線$y=f(\frac{π}{10}-x)$的一個對稱點為( 。
A.$(\frac{π}{5},0)$B.$(\frac{2π}{5},0)$C.$(\frac{3π}{5},0)$D.$(\frac{4π}{5},0)$

分析 由函數(shù)f(x)的解析式,求出f(x)的周期,再根據(jù)對稱軸求出f(x)的對稱中心,
利用函數(shù)的對稱性以及圖象平移法則,即可求出曲線y=f($\frac{π}{10}$-x)的一個對稱點.

解答 解:函數(shù)f(x)=Asin(x+θ)的周期為2π,且f(x)的一條對稱軸為x=$\frac{π}{5}$,
∴函數(shù)f(x)的一個對稱點為($\frac{π}{5}$-$\frac{π}{2}$,0),即(-$\frac{3π}{10}$,0);
∴函數(shù)y=f(-x)的一個對稱中心為($\frac{3π}{10}$,0);
又函數(shù)y=f($\frac{π}{10}$-x)的圖象可以由函數(shù)y=f(-x)的圖象向右平移$\frac{π}{10}$單位得到,
∴曲線y=f($\frac{π}{10}$-x)的一個對稱點為($\frac{3π}{10}$+$\frac{π}{10}$,0),即($\frac{2π}{5}$,0).
故選:B.

點評 本題考查了三角函數(shù)的周期性和對稱性問題,也考查了圖象的平移問題,是綜合題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.點M(x,y)是不等式組$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面區(qū)域Ω內(nèi)的一動點,且不等式2x-y+m≤0恒成立,則m的取值范圍是$m≤1-2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若二次函數(shù)f(x)=m2x2+nx+2的圖象與x軸有交點,則雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$(m>0,n>0)離心率e的取值范圍為( 。
A.(1,3]B.[3,+∞)C.$(1,\frac{{3\sqrt{2}}}{4}]$D.$[\frac{{3\sqrt{2}}}{4},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.對于函數(shù)f(x),若存在一個區(qū)間A=[a,b],使得{y|y=f(x),x∈A}=A,則稱A為f(x)的一個穩(wěn)定區(qū)間,相應(yīng)的函數(shù)f(x)為“局部穩(wěn)定函數(shù)”,給出下列四個函數(shù):①f(x)=tan$\frac{π}{4}$x;②f(x)=1-x2;③f(x)=ex-1;④f(x)=ln(x-1),所有“局部穩(wěn)定函數(shù)”的序號是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)列{bn}滿足$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,${b_n}={2^{{a_n}-1}}$,則數(shù)列$\left\{{\frac{a_n}{b_n}}\right\}$的前7項和S7=$\frac{187}{64}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,O為坐標原點,點F為拋物線C1:x2=2py(p>0)的焦點,且拋物線C1上點M處的切線與圓C2:x2+y2=1相切于點Q.
(Ⅰ)當直線MQ的方程為$x-y-\sqrt{2}=0$時,求拋物線C1的方程;
(Ⅱ)當正數(shù)p變化時,記S1,S2分別為△FMQ,△FOQ的面積,求$\frac{S_1}{S_2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列有關(guān)結(jié)論正確的個數(shù)為( 。
①小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則$P=({A|B})=\frac{2}{9}$;
②設(shè)函數(shù)f(x)存在導數(shù)且滿足$\lim_{△x→∞}\frac{{f(2)-f({2-3△x})}}{3△x}=-1$,則曲線y=f(x)在點(2,f(2))處的切線斜率為-1;
③設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$(i為虛數(shù)單位),則復數(shù)$\bar z$在復平面上對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知復數(shù)z滿足:|z|=1+3i-z,求$\frac{3+4i}{Z}$的值.

查看答案和解析>>

同步練習冊答案