【題目】為減少汽車尾氣排放,提高空氣質(zhì)量,各地紛紛推出汽車尾號(hào)限行措施.為做好此項(xiàng)工作,某市交警支隊(duì)對(duì)市區(qū)各交通樞紐進(jìn)行調(diào)查統(tǒng)計(jì),表中列出了某交通路口單位時(shí)間內(nèi)通過的1000輛汽車的車牌尾號(hào)記錄:

由于某些數(shù)據(jù)缺失,表中以英文字母作標(biāo)識(shí).請(qǐng)根據(jù)圖表提供的信息計(jì)算:

(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽出20輛,了解駕駛員對(duì)尾號(hào)限行的建議,應(yīng)分別從一、二、三、四組中各抽取多少輛?

(Ⅱ)以頻率代替概率,在此路口隨機(jī)抽取4輛汽車,獎(jiǎng)勵(lì)汽車用品.用表示車尾號(hào)在第二組的汽車數(shù)目,求的分布列和數(shù)學(xué)期望.

【答案】(Ⅰ)第一、二、三、四組應(yīng)抽取的汽車分別為4輛、5輛、5輛、6輛;見解析.

【解析】試題分析:(1)根據(jù)頻率和為可求得,根據(jù)頻數(shù)和頻率的關(guān)系可求出, ;(2)隨機(jī)變量服從二項(xiàng)分布,可根據(jù)公式求出個(gè)隨機(jī)變量對(duì)應(yīng)概率,列出分布列,進(jìn)而利用期望公式求解.

試題解析:(1)根據(jù)頻率定義, ,解得

,解得, ,解得

第一、二、三、四組應(yīng)抽取的汽車分別為輛、輛、輛、輛.

2)在此路口隨機(jī)抽取一輛汽車,該輛車的車尾號(hào)在第二組的概率為,由題意知,則, , , , , ,

的分布列為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不是直角三角形,它的三個(gè)角所對(duì)的邊分別為,已知.

1求證: ;

2如果面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)判斷函數(shù)在區(qū)間上的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間上滿足恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcos(x-).

(Ⅰ)求函數(shù)f(x)的最小正周期.

(Ⅱ)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是矩形, 平面 是等腰三角形, , 的一個(gè)三等分點(diǎn)(靠近點(diǎn)),的延長線交于點(diǎn),連接.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位?康臅r(shí)間(單位:小時(shí)),如果停靠時(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),以此類推,統(tǒng)計(jì)結(jié)果如表:

?繒r(shí)間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為小時(shí),求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位停靠小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在?吭摬次粫r(shí)必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且上焦點(diǎn)為,過的動(dòng)直線與橢圓相交于、兩點(diǎn).設(shè)點(diǎn),記的斜率分別為

1)求橢圓的方程;

2)如果直線的斜率等于,求的值;

3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx-x+a+1.

(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;

(2)求證:在(1)的條件下,當(dāng)x>1時(shí), x2+ax-a>xlnx+成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案