10.曲線$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與曲線$\frac{x^2}{25t}+\frac{y^2}{9t}=1({t>0})$的(  )
A.長軸長相等B.短軸長相等C.離心率相等D.焦距相等

分析 根據(jù)題意,由橢圓的方程計(jì)算可得兩個(gè)橢圓的長軸長、短軸長,焦距、離心率,比較即可得答案.

解答 解:曲線$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與曲線$\frac{x^2}{25t}+\frac{y^2}{9t}=1({t>0})$都表示橢圓,
對于$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,其中a=$\sqrt{25}$=5,b=$\sqrt{9}$=3,則有c=$\sqrt{25-9}$=4,
則其長軸長2a=10,短軸長2b=6,焦距2c=8,離心率e=$\frac{c}{a}$=$\frac{4}{5}$;
對于$\frac{x^2}{25t}+\frac{y^2}{9t}=1({t>0})$,其中a=$\sqrt{25t}$=5$\sqrt{t}$,b=$\sqrt{9t}$=3$\sqrt{t}$,則有c=$\sqrt{25t-9t}$=4$\sqrt{t}$,
則其長軸長2a=10$\sqrt{t}$,短軸長2b=6$\sqrt{t}$,焦距2c=8$\sqrt{t}$,離心率e=$\frac{c}{a}$=$\frac{4}{5}$;
比較可得,兩者的離心率相等;
故選:C.

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是有橢圓的標(biāo)準(zhǔn)方程計(jì)算出長軸長、短軸長,焦距、離心率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a=({cos{{45}°},sin4{5°}})$,$\vec b=({cos{{15}°},sin{{15}°}})$,$\vec a•\vec b$=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2ex,則( 。
A.f′(x)=f(x)+2B.f′(x)=f(x)C.f′(x)=3f(x)D.f′(x)=2f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知λ∈R,向量$\overrightarrow a=({3,λ})\;,\;\overrightarrow b=({λ-1\;,\;2})$,則“λ=3”是“$\overrightarrow a∥\overrightarrow b$”的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“若a2+b2=0,則a,b都為零”的否命題是(  )
A.若a2+b2≠0,則a,b都不為零B.若a2+b2≠0,則a,b不都為零
C.若a,b都不為零,則a2+b2≠0D.若a,b不都為零,則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:“?x∈[-1,2],x2-a<0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“p∨¬q”為假命題,則實(shí)數(shù)a的取值范圍為a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:拋物線m:y2=2px焦點(diǎn)為F,以F為圓心的圓F過原點(diǎn)O,過F引斜率為k的直線與拋物線m和圓F從上至下順次交于A、B、C、D.若$\overrightarrow{AB}•\overrightarrow{CD}$=4.
(1)求拋物線方程.
(2)當(dāng)為k何值時(shí),△AOB、△BOC、△COD的面積成等差數(shù)列;
(3)設(shè)M為拋物線上任一點(diǎn),過M點(diǎn)作拋物線的準(zhǔn)線的垂線,垂足為H.在圓F上是否存在點(diǎn)N,使|MH|-|MN|的最大值,若存在,求出|MH|-|MN|的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在棱長為2的正方體OABC-O′A′B′C′中,E,F(xiàn)分別是棱AB,BC上的動點(diǎn).
(1)當(dāng)AE=BF時(shí),求證A′F⊥C′E;
(2)若E,F(xiàn)分別為AB,BC的中點(diǎn),求直線O′B與平面B′EF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,已知在菱形ABCD中,∠B=120°,E為AB的中點(diǎn),現(xiàn)將四邊形EBCD沿DE折起至EBHD,如圖2.

(1)求證:DE⊥面ABE;
(2)若二面角A-DE-H的大小為$\frac{2π}{3}$,求平面ABH與平面ADE所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案