15.已知命題p:“?x∈[-1,2],x2-a<0”,命題q:“?x∈R,x2+2ax+2-a=0”,若命題“p∨¬q”為假命題,則實數(shù)a的取值范圍為a≤-2.

分析 若命題“p∨¬q”為假命題,則p假q真,進而得到實數(shù)a的取值范圍.

解答 解:若命題p為真命題,
即“?x∈[-1,2],x2<a”,則a>0,
若命題q為真命題,
即方程x2+2ax+2-a=0有實根,則△=4a2+4a-8≥0,
解得:a≤-2,或a≥1,
若命題“p∨¬q”為假命題,則p假q真,
故實數(shù)a的取值范圍為a≤-2,
故答案為:a≤-2

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,存在性問題,方程根的個數(shù)判斷,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的各項都為正數(shù),且對任意n∈N*,都有$a_{n+1}^2={a_n}{a_{n+2}}+k$(k為常數(shù)).
(1)若k=0,且a1=1,-8a2,a4,a6成等差數(shù)列,求數(shù)列{an}的前n項和Sn;
(2)若$k={({a_2}-{a_1})^2}$,求證:a1,a2,a3成等差數(shù)列;
(3)已知a1=a,a2=b(a,b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對任意n∈N*都成立?若存在.求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線y=x3+x在x=1處的切線與x軸,直線x=2所圍成的三角形的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在一次射擊訓練中,某戰(zhàn)士連續(xù)射擊了兩次.設命題p是“第一次射擊擊中目標”,q是“第二次擊中目標”.則用p,q以及邏輯聯(lián)結詞(¬,∧,∨)表示“兩次都沒有擊中目標”為(?p)∧(?q)或?(p∨q).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.曲線$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與曲線$\frac{x^2}{25t}+\frac{y^2}{9t}=1({t>0})$的( 。
A.長軸長相等B.短軸長相等C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點M、N.若以橢圓的焦點為頂點,以橢圓長軸的頂點為焦點作一雙曲線恰為等軸雙曲線.
(1)求橢圓的離心率;
(2)設L為過橢圓右焦點N的直線,交橢圓于P、Q兩點,當△MPQ周長為8時;求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題中正確的是( 。
A.“x<-1”是“x2-x-2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2-2ax+3>0恒成立”是真命題,則實數(shù)a的取值范圍是0≤a<3
D.命題“若x2-3x+2=0,則x=2”的否命題為“若x2-3x+2=0,則x≠2”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,則cosA+sinC的取值范圍為( 。
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點F(-c,0)(c>0)作圓x2+y2=$\frac{a^2}{4}$的切線,切點為E,延長FE交雙曲線右支于點P.且滿足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,則雙曲線的漸近線方程為( 。
A.$\sqrt{10}$x±2y=0B.2x±$\sqrt{10}$y=0C.$\sqrt{6}$x±2y=0D.2x±$\sqrt{6}$y=0

查看答案和解析>>

同步練習冊答案