分析 (Ⅰ)推導(dǎo)出AA1⊥AB,AB⊥FM,CM⊥AB,從而AB⊥平面CMF,由此能證明平面ABC1⊥平面CMF.
(Ⅱ)記線段A1B1的中點(diǎn)為N,連結(jié)MN,以M為原點(diǎn),MC為x軸,MA為y軸,MN為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AC1與平面CEF所成角的正弦值.
解答 證明:(Ⅰ)∵AA1B1B是邊長(zhǎng)為2的正方形,∴AA1⊥AB,
又在正方形ABB1A1中,F(xiàn),M分別是線段A1B1,AB的中點(diǎn),
∴FM∥A1A,∴AB⊥FM,
在△ABC中,CA=CB,且點(diǎn)M是線段AB的中點(diǎn),
∴CM⊥AB,
又CM∩FM=M,∴AB⊥平面CMF,
又AB?平面ABC1,∴平面ABC1⊥平面CMF.
解:(Ⅱ)在等腰△CAB中,由CA⊥CB,AB=2,知CA=CB=$\sqrt{2}$,且CM=1,
記線段A1B1的中點(diǎn)為N,連結(jié)MN,
由(Ⅰ)知MC、MA、MN兩兩互相垂直,
以M為原點(diǎn),MC為x軸,MA為y軸,MN為z軸,建立空間直角坐標(biāo)系,
則C(1,0,0),E(0,1,$\frac{1}{2}$),F(xiàn)(0,$\frac{1}{4}$,2),A(0,1,0),C1(1,0,2),
$\overrightarrow{CE}$=(-1,1,$\frac{1}{2}$),$\overrightarrow{EF}$=(0,-$\frac{3}{4}$,$\frac{3}{2}$),$\overrightarrow{A{C}_{1}}$=(1,-1,2),
設(shè)平面CEF的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=-x+y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{EF}=-\frac{3}{4}y+\frac{3}{2}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(5,4,2),
設(shè)直線AC1與平面CEF所成角為θ,
則sinθ=|cos<$\overrightarrow{A{C}_{1}},\overrightarrow{n}$>|=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{n}|}$=$\frac{|5-4+4|}{\sqrt{6}•\sqrt{45}}$=$\frac{\sqrt{30}}{18}$,
∴直線AC1與平面CEF所成角的正弦值為$\frac{\sqrt{30}}{18}$.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線面角、空間中線線、線面、面面的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -156 | B. | -128 | C. | -28 | D. | 128 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{23}{25}$ | B. | -$\frac{23}{25}$ | C. | $\frac{7}{8}$ | D. | -$\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 1或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 110 | B. | 216 | C. | 214 | D. | 218 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AB邊中線的中點(diǎn) | B. | AB邊中線的三等分點(diǎn)(非重心) | ||
C. | 重心 | D. | AB邊的中點(diǎn) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com