2.若cos($\frac{π}{8}$-α)=$\frac{1}{5}$,則cos($\frac{3π}{4}$+2α)的值為( 。
A.$\frac{23}{25}$B.-$\frac{23}{25}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

分析 運用誘導(dǎo)公式得出cos($\frac{π}{8}$-α)=$sin(\frac{3π}{8}+α)$,再利用二倍角公式求出cos($\frac{3π}{4}$+2α)的值即可.

解答 解:∵cos($\frac{π}{8}$-α)=$sin[\frac{π}{2}-(\frac{π}{8}-α)]=sin(\frac{3π}{8}+α)=\frac{1}{5}$,
∴cos($\frac{3π}{4}$+2α)=$1-2si{n}^{2}(\frac{3π}{8}+α)=1-2×(\frac{1}{5})^{2}=\frac{23}{25}$.
故選:A.

點評 本題考查三角函數(shù)的化簡求值,考查三角函數(shù)的誘導(dǎo)公式及運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)直線l:(a+1)x+y+2-a=0,(a∈R)
(1)求證:對任意實數(shù)a,該直線恒過一定點;
(2)當(dāng)直線l與圓x2+y2=16相交截得的弦長最小時,求此時a的值及弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)h(x)=x2+2x+alnx(a∈R),f(x)=(x2-2x)lnx+ax2+2.
(1)討論函數(shù)y=h(x)的單調(diào)性;
(2)當(dāng)a>0時,設(shè)函數(shù)g(x)=f(x)-x-2且函數(shù)g(x)有且只有一個零點,若e-2<x<e,g(x)≤m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,在棱長為4的正方體ABCD-A1B1C1D1中,E、F分別是AB、DD1的中點,點P是DD1上一點,且PB∥平面CEF,則四棱錐P-ABCD外接球的體積為$\frac{41\sqrt{41}}{6}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項和為Sn=2an-1,則滿足$\frac{{a}_{n}}{n}≤2$的最大正整數(shù)n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓M與直線3x-4y=0及3x-4y+10=0都相切,圓心在直線y=-x-4上,則圓M的標(biāo)準(zhǔn)方程為(x+3)2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在三棱柱ABC-A1B1C1中,已知側(cè)按AA1⊥底面ABC,且四邊形AA1B1B是邊長為2的正方形,CA=CB,點M為棱AB的中點,點E,F(xiàn)分別在按AA1,A1B1
(Ⅰ)若點F為棱A1B1的中點,證明:平面ABC1⊥平面CMF
(Ⅱ)若AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,且CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對于R上可導(dǎo)的函數(shù)f(x),若滿足(x-1)•f′(x)≥0,則下列說法錯誤的是( 。
A.函數(shù)f(x)在(0,+∞)上是增函數(shù)B.f(x)在(-∞,0)上是減函數(shù)
C.當(dāng)x=1時,f(x)取得極小值D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我國從2016年1月1日起統(tǒng)一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后和80后作為調(diào)查對象,隨機調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計
70后301545
80后451055
合計7525100
(1)以這100個人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且視頻率為概率,若從該市70后公民中隨機抽取3位,記其中生二胎的人數(shù)為X,求隨機變量X的分布列,數(shù)學(xué)期望和方差;
(2)根據(jù)調(diào)查數(shù)據(jù),是否有90%的把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.005
k02.0722.7063.8415.0246.6357.879

查看答案和解析>>

同步練習(xí)冊答案