2.某幾何體三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

分析 由三視圖可知:該幾何體為一個(gè)正方體去掉一個(gè)倒立的四棱錐.

解答 解:由三視圖可知:該幾何體為一個(gè)正方體去掉一個(gè)倒立的四棱錐.
∴該幾何體的體積V=${2}^{3}-\frac{1}{3}×{2}^{2}×2$=$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點(diǎn)評(píng) 本題考查了正方體與四棱錐的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓錐的底面半徑為2,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的表面積為(  )
A.B.12πC.D.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則在齊王的馬獲勝的條件下,齊王的上等馬獲勝的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U={x∈R|x>0},函數(shù)f(x)=$\frac{1}{\sqrt{lnx-1}}$的定義域?yàn)锳,則∁UA為( 。
A.(0,e]B.(0,e)C.(e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(X≥4)=0.1587,則P(2<X<4)=( 。
A.0.6826B.0.3413C.0.4603D.0.9207

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.襄陽農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2326322616
襄陽農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線PA,PB分別與半徑為1的圓O相切于點(diǎn)A,B,PO=2,$\overrightarrow{PM}=2λ\overrightarrow{PA}+(1-λ)\overrightarrow{PB}$.若點(diǎn)M在圓O的內(nèi)部(不包括邊界),則實(shí)數(shù)λ的取值范圍是( 。
A.(-1,1)B.$(0,\frac{2}{3})$C.$(\frac{1}{3},1)$D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某公司為了準(zhǔn)確地把握市場,做好產(chǎn)品生產(chǎn)計(jì)劃,對過去四年的數(shù)據(jù)進(jìn)行整理得到了第x年與年銷量y(單位:萬件)之間的關(guān)系如表:
x1234
y12284256
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點(diǎn)圖擬合y與x的回歸模型,并用相關(guān)系數(shù)加以說明;
(Ⅲ)建立y關(guān)于x的回歸方程,預(yù)測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù):$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
參考公式:相關(guān)系數(shù)$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回歸方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在正三棱錐A-BCD中,AB=$\sqrt{5}$,點(diǎn)A到底面BCD的距離為1,E為棱BC的中點(diǎn).
(1)求異面直線AE與CD所成角的大小;(結(jié)果用反三角函數(shù)值表示)
(2)求正三棱錐A-BCD的表面積.

查看答案和解析>>

同步練習(xí)冊答案