12.已知二面角A-BC-D,A-CD-B,A-BD-C的平面角都相等,則點A在平面BCD上的射影是△BCD的( 。
A.內(nèi)心B.外心C.垂心D.重心

分析 二面角A-BC-D,A-CD-B,A-BD-C的平面角都相等,可得點A在平面BCD上的射影到△BCD的三邊的距離都相等,即可得出結(jié)論.

解答 解:∵二面角A-BC-D,A-CD-B,A-BD-C的平面角都相等,
∴點A在平面BCD上的射影到△BCD的三邊的距離都相等,
∴點A在平面BCD上的射影是△BCD的內(nèi)心,
故選:A.

點評 本題考查二面角的平面角,考查三角形內(nèi)心的概念,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F1,F(xiàn)2為橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點,弦AB過F1,則△F2AB的周長為( 。
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在梯形ABCD中,AD∥BC∠BAD=135°,以A為圓心,AB為半徑,作⊙A交AD、BC于E、F兩點,并交BA延長線于G點,則$\widehat{BF}$的度數(shù)是90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過點A(2,b)和點B(3,-2)的直線的斜率為-1,則b的值是( 。
A.5B.1C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題p:“若x∈R且$\frac{x}{x+1}$≥0,則x<-1或x≥0”的否命題是:“若$\frac{x}{x+1}$<0,則-1<x<0”;命題q:“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”,則四個命題¬p∨¬q,p∧q,¬p∧q,p∨¬q中,正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=\sqrt{2sin(π-2x)-1}$的定義域為(  )
A.$\{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z\}$B.$\{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z\}$
C.$\{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{2π}{3},k∈Z\}$D.$\{x|kπ+\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=ax-1(a>0且a≠1)恒過定點( 。
A.(0,1)B.(1,1)C.(1,0)D.(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.求值:$sin({-\frac{π}{6}})+cos\frac{2}{3}π-tan\frac{5}{4}$π=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|x=m2-n2,m、n∈Z}
(1)判斷8,9,10是否屬于集合A;
(2)已知集合B={x|x=2k+1,k∈Z},證明:“x∈A”的充分非必要條件是“x∈B”;
(3)寫出所有滿足集合A的偶數(shù).

查看答案和解析>>

同步練習(xí)冊答案