13.若定義在[-2010,2010]上的函數(shù)f(x)滿足:對任意x1,x2∈[-2010,2010],有f(x1+x2)=f(x1)+f(x2)-2009,且x>0時,有f(x)>2009,f(x)的最大值、最小值分別為M,N,則M+N=4018.

分析 利用恒等式和賦值法求f(0)的值,令x1=x,x2=-x代入恒等式化簡后,由函數(shù)奇偶性的定義構(gòu)造F(x)=f(x)-2009,并判斷為奇函數(shù),由恒等式、條件和函數(shù)的單調(diào)性判斷出f(x)的單調(diào)性,可求出答案.

解答 解:∵對任意x1,x2∈[-2010,2010],有f(x1+x2)=f(x1)+f(x2)-2009,
∴令x1=x2=0,則f(0)=2009,令x1=x,x2=-x,
則f(0)=f(x)+f(-x)-2009,得2009=f(x)+f(-x)-2009,
即f(x)+f(-x)=2×2009,且f(-x)-2009=-[f(x)-2009],
∴F(x)=f(x)-2009為奇函數(shù),即f(x)關(guān)于點(0,2009)對稱;
∵-2010≤x1<x2≤2010,不妨設(shè)x2=x1+h(h>0),則f(h)>2009,
∴f(x2)=f(x1)+f(h)-2009>f(x1),
∴f(x)在[-2010,2010]上是單調(diào)遞增函數(shù),
∴M+N=f(2009)+f(-2009)=2×2009=4018,
故答案為:4018.

點評 本題考查抽象函數(shù)的函數(shù)值、奇偶性、單調(diào)性問題,以及賦值法、等價轉(zhuǎn)化的思想,構(gòu)造法的應(yīng)用,根據(jù)恒等式、函數(shù)的奇偶性、單調(diào)性進行正確賦值是解決本題的關(guān)鍵,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.一個等腰三角形的周長是30,底邊長y是關(guān)于腰長x的函數(shù),則這個函數(shù)的解析式為y=30-2x,(0<x<15)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x)關(guān)于點(2,0)對稱,且對任意的實數(shù)x都滿足f(x)=f(2-x),若f(-5)=-2,則f(2015)=( 。
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)函數(shù)$f(x)=\frac{x}{{{e^{2x}}}}$(e=2.71828是自然對數(shù)的底數(shù)).
(1)f(x)的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)+c根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.以下四個關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點;
②在平面內(nèi),設(shè)A,B為兩個定點,P為動點,且|PA|+|PB|=k,其中常數(shù)k為正實數(shù),則動點P的軌跡為橢圓;
③方程2x2-x+1=0的兩根可分別作為橢圓和雙曲線離心率;
④過雙曲線${x^2}-\frac{y^2}{2}=1$的右焦點F作直線l交雙曲線與A,B兩點,若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號為①④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx,當x2>x1>0時,下列結(jié)論中正確的命題的序號是④.
①(x1-x2)•[f(x1-f(x2)]<0;
②$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1;
③f(x1)+x2<f(x2)+x1;
④x2f(x1)<x1f(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.(1)如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可估計樣本重量的中位數(shù)為12.5;
(2)在回歸分析中,代表了數(shù)據(jù)點和它在回歸直線上相應(yīng)位置的差異的是殘差平方和;
(3)如果根據(jù)性別與是否愛好運動的列聯(lián)表得到K2≈3.852,所以判斷性別與運動有關(guān),那么這種判斷犯錯的可能性不超過5%;
 P(K2≥k) 0.100 0.050 0.010
 k 2.706 3.841 6.635
(4)設(shè)有一個回歸方程為$\widehat{y}$=3-5x,則變量x增加一個單位時y平均減少5個單位;
(5)兩個變量x與y的回歸模型中分別選擇了4個不同模型,它們的相關(guān)指數(shù)R2如下,模型1的相關(guān)指數(shù)R2為0.98,模型2的相關(guān)指數(shù)R2為0.80,模型3的相關(guān)指數(shù)R2為0.50,模型4的相關(guān)指數(shù)R2為0.25.其中擬合效果最好的模型是模型4.其中正確命題的序號為(1)(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{3}{{a}^{x}+1}$+sinx-2,其中a>0且a≠1,若f(2)=5,則f(-2)=( 。
A.-6B.-5C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$═1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A,B,兩直線MA,MB分別與C1相交于點D,E.
①曲線C1,C2的方程分別為$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③記△MAB,△MDE的面積分別為S1,S2,則$\frac{{S}_{1}}{{S}_{2}}$的最大值為$\frac{25}{64}$;
④記△MAB,△MDE的面積分別為S1,S2,當$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{32}$時,直線l的方程為:y=$\frac{3}{2}$x或y=-$\frac{3}{2}$x.
以上列說法正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案