16.已知函數(shù)$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若關(guān)于x的方程$f(x)=\frac{1}{2}x+m$恰有三個(gè)不相等的實(shí)數(shù)解,則m的取值范圍是$(0,\frac{9}{16})$.

分析 若關(guān)于x的方程$f(x)=\frac{1}{2}x+m$恰有三個(gè)不相等的實(shí)數(shù)解,則函數(shù)f(x)的圖象與直線y=$\frac{1}{2}x+m$有三個(gè)交點(diǎn),數(shù)形結(jié)合可得答案.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$的圖象如下圖所示:

若關(guān)于x的方程$f(x)=\frac{1}{2}x+m$恰有三個(gè)不相等的實(shí)數(shù)解,
則函數(shù)f(x)的圖象與直線y=$\frac{1}{2}x+m$有三個(gè)交點(diǎn),
當(dāng)直線y=$\frac{1}{2}x+m$經(jīng)過(guò)原點(diǎn)時(shí),m=0,
由y=-x2+2x的導(dǎo)數(shù)y′=-2x+2=$\frac{1}{2}$得:x=$\frac{3}{4}$,
當(dāng)直線y=$\frac{1}{2}x+m$與y=-x2+2x相切時(shí),切點(diǎn)坐標(biāo)為:($\frac{3}{4}$,$\frac{15}{16}$),
當(dāng)直線y=$\frac{1}{2}x+m$經(jīng)過(guò)($\frac{3}{4}$,$\frac{15}{16}$)時(shí),m=$\frac{9}{16}$,
故m∈$(0,\frac{9}{16})$,
故答案為:$(0,\frac{9}{16})$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=xm(1-x)n在區(qū)間[0,1]上的圖象如圖所示,則m,n的值為( 。
A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=2,n=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三個(gè)頂點(diǎn)B1(0,-b),B2(0,b),A(a,0),焦點(diǎn)F(c,0),且B1F⊥AB2,則橢圓的離心率為$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.直線y=kx+3(k≠0)與圓x2+y2-6x-4y+9=0相交于A、B兩點(diǎn),若$|AB|=2\sqrt{3}$,則k的值是$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若雙曲線$\frac{x^2}{3}-{y^2}=1$的左焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則p的值為( 。
A.2B.3C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)點(diǎn)A(2,1),且與直線x+2y-1=0垂直的直線方程為( 。
A.x+2y-4=0B.x-2y=0C.2x-y-3=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R).若曲線x=$\sqrt{3-{y}^{2}}$上存在點(diǎn)B使∠APB=60°,則t的取值范圍是( 。
A.(0,1+$\sqrt{3}$]B.[0,1+$\sqrt{3}$]C.[-1-$\sqrt{3}$,1+$\sqrt{3}$]D.[-1-$\sqrt{3}$,0)∪(0,1+$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子里任取2個(gè)球,乙從箱子里任取1個(gè)球.若取出的3個(gè)球顏色全不相同,則甲獲勝.
(1)試問(wèn)甲如何安排箱子里兩種顏色球的個(gè)數(shù),才能使自己獲勝的概率最大?
(2)在(1)的條件下,設(shè)取出的3個(gè)球中紅球的個(gè)數(shù)為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=ax2+bx+2a-b是定義在[a-1,2a]上的偶函數(shù),則a+b=( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.0D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案