14.已知集合A={x∈Z|$\frac{x+1}{x-3}$≤0},B={y|y=x2+1,x∈A},則集合B的子集個(gè)數(shù)為( 。
A.5B.8C.3D.2

分析 利用列舉法求得集合A、B,然后根據(jù)子集的概念,即可得出結(jié)論.

解答 解:A={-1,0,1,2},B={1,2,5},子集個(gè)數(shù)為23=8個(gè),
故選B.

點(diǎn)評(píng) 本題考查子集的概念,考查集合的化簡(jiǎn),比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;   
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a-$\sqrt{3}$c)cosB=$\sqrt{3}$bcosC,求f($\frac{A}{2}$)+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校2017屆高三文(1)班在一次數(shù)學(xué)測(cè)驗(yàn)中,全班N名學(xué)生的數(shù)學(xué)成績(jī)的頻率分布直方圖如下,已知分?jǐn)?shù)在110~120的學(xué)生數(shù)有14人.
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在120~125的人數(shù)n;
(2)利用頻率分布直方圖,估算該班學(xué)生數(shù)學(xué)成績(jī)的眾數(shù)和中位數(shù)各是多少?
(3)現(xiàn)在從分?jǐn)?shù)在115~120名學(xué)生(男女生比例為1:2)中任選2人,求其中至多含有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(5,k),$\overrightarrow$=(2,-2),則使|$\overrightarrow{a}-\overrightarrow$|≤5成立的充分不必要條件是( 。
A.-6≤k≤2B.-6≤k≤-2C.-2≤k≤6D.2≤k≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知曲線C1:y=x2與曲線C2:$y=lnx(x>\frac{{\sqrt{2}}}{2})$,直線l是曲線C1和曲線C2的公切線,設(shè)直線l與曲線C1切點(diǎn)為P,則點(diǎn)P的橫坐標(biāo)t滿足( 。
A.$0<t<\frac{1}{2e}$B.$\frac{1}{2e}<t<\frac{1}{2}$C.$\frac{1}{2}<t<\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}<t<\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一企業(yè)從某生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值x,得到的頻率分布直方圖如圖.
(1)估計(jì)該技術(shù)指標(biāo)值x平均數(shù)$\overline x$;
(2)在直方圖的技術(shù)指標(biāo)值分組中,以x落入各區(qū)間的頻率作為x取該區(qū)間值的頻率,若$|{x-\overline x}|>4$,則產(chǎn)品不合格,現(xiàn)該企業(yè)每天從該生產(chǎn)線上隨機(jī)抽取5件產(chǎn)品檢測(cè),記不合格產(chǎn)品的個(gè)數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“a>b”是“l(fā)na>lnb”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z滿足(z-3)(1-3i)=10(i為虛數(shù)單位),則z的模為(  )
A.$\sqrt{5}$B.5C.$2\sqrt{6}$D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,則z=x-2y的最小值為( 。
A.-6B.-2C.-1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案