精英家教網 > 高中數學 > 題目詳情
若函數f(x)=∝,則使的x的取值范圍為( )
A.(-∝,1]∪(3,+∝)
B.(-∝,2]∪(4,+∝)
C.(-∝,2)∪(3,+∝)
D.(-∝,3)∪(4,+∝)
【答案】分析:將變量x按分段函數的范圍分成兩種情形,在兩種情形的條件下分別進行求解,最后將滿足的范圍進行合并.
解答:解:①當x≤1時,,解得x<2;
∴x≤1;
②當x>1時,log81x,解得x>3
∴x>3
∴x∈(-∝,1]∪(3,+∝)
故選A.
點評:本題考查了分段函數已知函數值求自變量的范圍問題,以及指數不等式與對數不等式的解法,屬于常規(guī)題.處理分段函數的問題的原則是分類討論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若函數f(x),g(x)的定義域和值域都是R,則“f(x)<g(x),x∈R”成立的充要條件是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=x+x3,x1,x2∈R,且x1+x2>0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廈門模擬)定義在R上的函數f(x),其圖象是連續(xù)不斷的,如果存在非零常數λ(λ∈R,使得對任意的x∈R,都有f(x+λ)=λf(x),則稱y=f(x)為“倍增函數”,λ為“倍增系數”,下列命題為真命題的是
①③④
①③④
(寫出所有真命題對應的序號).
①若函數y=f(x)是倍增系數λ=-2的倍增函數,則y=f(x)至少有1個零點;
②函數f(x)=2x+1是倍增函數,且倍增系數λ=1;
③函數f(x)=
e
-x
 
是倍增函數,且倍增系數λ∈(0,1);
④若函數f(x)=sin(2ωx)(ω>0)是倍增函數,則ω=
2
(k∈N*)

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)的定義域為[0,4],則g(x)=
f(2x)x-1
的定義域為
[0,1)∪(1,2]
[0,1)∪(1,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=sinωx+acosωx(ω>0)的圖象關于點M(
π
3
,0)
對稱,且滿足f(
π
6
-x
)=f(
π
6
+x
),則a+ω的一個可能的取值是( 。

查看答案和解析>>

同步練習冊答案