(本小題12分)
已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點

(1)求此雙曲線的標準方程;
(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分16分)
平面直角坐標系xOy中,已知圓M經(jīng)過F1(0,-c),F(xiàn)2(0,c),A(c,0)三點,其中c>0
(1)求圓M的標準方程(用含c的式子表示);
(2)已知橢圓(其中)的左、右頂點分別為D、B,圓 M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè)。
求橢圓離心率的取值范圍;
若A、B、M、O、C、D(O為坐標原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點到點的距離比它到直線的距離小1,則點的軌跡方程是(。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設定點,,動點滿足條件,則動點的軌跡是( 。.
A.橢圓B.線段C.不存在D.橢圓或線段或不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,設點,以線段為直徑的圓經(jīng)過原點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線與軌跡交于兩點,點關(guān)于軸的對稱點為,試判斷直線是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

我國于2010年10月1日成功發(fā)射嫦娥二號衛(wèi)星,衛(wèi)星飛行約兩小時到達月球,到達月球以后,經(jīng)過幾次變軌將繞月球以橢圓型軌道飛行,其軌跡是以月球的月心為一焦點的橢圓。若第一次變軌前衛(wèi)星的近月點到月心的距離為m,遠月點到月心的距離為n,第二次變軌后兩距離分別為2m,2n.則第一次變軌前的橢圓離心率比第二次變軌后的橢圓離心率 (   )
A.變大B.變小C.不變D.與的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知雙曲線和圓(其中原點為圓心),過雙曲線上一點引圓的兩條切線,切點分別為、
(1)若雙曲線上存在點,使得,求雙曲線離心率的取值范圍;
(2)求直線的方程;
(3)求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)
如圖所示,在直角梯形ABCD中,,曲線段.DE上
任一點到A、B兩點的距離之和都相等.
(Ⅰ) 建立適當?shù)闹苯亲鴺讼,求曲線段DE的方程;
(Ⅱ) 過C能否作-條直線與曲線段DE 相交,且所
得弦以C為中點,如果能,求該弦所在的直線
的方程;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P為拋物線上一動點,則點P到y(tǒng)軸距離和到點A距離之和的最小值等于     .

查看答案和解析>>

同步練習冊答案