A. | B. | C. | D. |
分析 先判斷函數(shù)的奇偶性,再判斷當(dāng)-1<x<1時(shí),得到y(tǒng)>0,即可判斷.
解答 解:y=f(-x)=$\frac{-cos(-x)}{ln|-x|}$=$\frac{-cosx}{ln|x|}$=f(x),且定義域?yàn)閧x|x≠±1}
∴f(x)為偶函數(shù),
當(dāng)-1<x<1時(shí),cosx>0,ln|x|<0,
∴y>0,
故選:D
點(diǎn)評(píng) 本題考查了函數(shù)的圖象的識(shí)別,關(guān)鍵掌握函數(shù)的奇偶性和函數(shù)值的變化趨勢(shì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n+1}{2(n+2)}$ | B. | $\frac{3}{4}$-$\frac{n+1}{2(n+2)}$ | C. | $\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$) | D. | $\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com