如圖,已知四棱錐中,底面是直角梯形,,,,,平面. 
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若的中點(diǎn),求三棱錐的體積.
證明過程詳見試題解析.

試題分析:(Ⅰ)要證明直線與平面平行,就是要證明直線與平面內(nèi)一條直線平行,根據(jù)題意顯然直線滿足要求. (Ⅱ)要證明平面,就是要證明直線與平面內(nèi)兩條相交直線垂直.根據(jù)題意符合要求.(Ⅲ)要求三棱錐的體積,就是要求出的面積以及三棱錐的高.
試題解析:(Ⅰ)證明:,且平面
平面
(Ⅱ)證明:在直角梯形中,過于點(diǎn),則四邊形為矩形
,又,∴,在Rt△中,,
,
,則

 ∴
 ∴平面 
(Ⅲ)∵中點(diǎn),
到面的距離是到面距離的一半
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長(zhǎng)方體,中點(diǎn).

(1)求證:
(2)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說明理由;
(3)若二面角的大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱中,

(1)求證:;
(2)若 ,在棱上確定一點(diǎn)P, 使二面角的平面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是等邊三角形,,將沿折疊到的位置,使得

(1)求證:;
(2)若分別是,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,棱柱的側(cè)面是菱形,

(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)上的點(diǎn),且平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正方體ABCD﹣A1B1C1D1中,棱長(zhǎng)AB=1.

(Ⅰ)求異面直線A1B與 B1C所成角的大;(Ⅱ)求證:平面A1BD∥平面B1CD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,過對(duì)角線BD1的一個(gè)平面交AA1于E,交CC1于F,得四邊形BFD1E,給出下列結(jié)論:
①四邊形BFD1E有可能為梯形
②四邊形BFD1E有可能為菱形
③四邊形BFD1E在底面ABCD內(nèi)的投影一定是正方形
④四邊形BFD1E有可能垂直于平面BB1D1D
⑤四邊形BFD1E面積的最小值為
其中正確的是      (請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列各圖中,、為正方體的兩個(gè)頂點(diǎn),、、分別為其所在棱的中點(diǎn),能得出//平面的圖形的序號(hào)是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線a、b、l及平面M、N,下列命題中正確的是(  )
A若a∥M,b∥M,則a∥b
B若a∥M,b⊥a,則b⊥M
C若aM,bM,且l⊥a,l⊥b,則l⊥M
D若a⊥M,M∥N,則a⊥N

查看答案和解析>>

同步練習(xí)冊(cè)答案