已知是定義在上的奇函數(shù),且,若時,有成立.
(1)判斷上的單調(diào)性,并證明;
(2)解不等式:;
(3)若當(dāng)時,對所有的恒成立,求實(shí)數(shù)的取值范圍.
解:(1)上單調(diào)遞增.
(2)不等式的解集為
(3)的取值范圍是.
本題主要考查單調(diào)性和奇偶性的綜合應(yīng)用及函數(shù)最值、恒成立問題的轉(zhuǎn)化化歸思想.
(1)由單調(diào)性定義判斷和證明;
(2)由f(x)是奇函數(shù)和(1)的結(jié)論知f(x)在上[-1,1]是增函數(shù),再利用定義的逆用求解;
(3)先由(1)求得f(x)的最大值,再轉(zhuǎn)化為關(guān)于a的不等式恒成立問題求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),且。
(1)求函數(shù)的解析式;
(2)用單調(diào)性的定義證明上是增函數(shù);
(3)解不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果兩個函數(shù)的對應(yīng)關(guān)系相同,值域相同,但定義域不同,則這兩個函數(shù)為“同族函數(shù)”,那么函數(shù)的“同族函數(shù)”有(  )
A.3個B.7個C.8個D.9個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在一定范圍內(nèi),某種產(chǎn)品的購買量y噸與單價x元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價應(yīng)該為          元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)若是定義在上的增函數(shù),且對一切,滿足.
(1)求的值;
(2)若,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)某公司是專門生產(chǎn)健身產(chǎn)品的企業(yè),第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對第一批產(chǎn)品上市后的市場銷售進(jìn)行調(diào)研,結(jié)果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時間的關(guān)系;(2)的折線表示的是每件產(chǎn)品的銷售利潤與上市時間的關(guān)系.

(1)寫出市場的日銷售量與第一批產(chǎn)品A上市時間t的關(guān)系式;
(2)第一批產(chǎn)品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)中,表示同一個函數(shù)的是(     )
A.,B.,
C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當(dāng)a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在[-5,5]上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) .
(1) 求函數(shù)的定義域;
(2) 求證上是減函數(shù);
(3) 求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案