13.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$單位得到的部分圖象如圖,則φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{2}$

分析 根據(jù)函數(shù)平移變化的規(guī)律,求解出平移的解析式,根據(jù)圖象經(jīng)過的坐標(biāo)求出ω 和φ即可.

解答 解:函數(shù)f(x)=Asin(ωx+φ),向左平移$\frac{π}{12}$單位得到g(x)=Asin[ω(x+$\frac{π}{12}$)+φ]=Asin(ωx+$\frac{ωπ}{12}$+φ),
由題意可知g(x)圖象過($-\frac{π}{6}$,0),($\frac{π}{3},0$),
可得$\frac{1}{2}$T=$\frac{π}{3}-(-\frac{π}{6})$,得T=π,
又T=$\frac{2π}{ω}$,可得ω=2.
則g(x)=Asin(2x+$\frac{π}{6}$+φ),
將坐標(biāo)($-\frac{π}{6}$,0)代入可得:0=sin(-2×$\frac{π}{6}+\frac{π}{6}+$φ),
得:φ-$\frac{π}{6}$=kπ(k∈Z)
∵|φ|<$\frac{π}{2}$,
∴當(dāng)k=0時.可得φ=$\frac{π}{6}$.
故選:A.

點(diǎn)評 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=-14,a5+a6=-4,Sn取最小值時n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{x^2}{8}-{y^2}=1$的焦點(diǎn)到其漸近線的距離是(  )
A.$2\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{bx+1}{(ax+1)^{2}}$(x≠-$\frac{1}{a}$,a>0),且f(1)=log162,f(-2)=1.
(1)求函數(shù)f(x)的表達(dá)式;
(2)已知數(shù)列{xn}的項(xiàng)滿足xn=[1-f(1)][1-f(2)]…[1-f(n)],試求x1,x2,x3,x4;
(3)猜想{xn}的通項(xiàng)公式.(不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若平面內(nèi)三點(diǎn)A(1,-a),B(2,a2),C(3,a3)共線,則a=( 。
A.1±$\sqrt{2}$或0B.$\frac{{2-\sqrt{5}}}{2}或0$C.$\frac{{2±\sqrt{5}}}{2}$D.$\frac{{2+\sqrt{5}}}{2}或0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=3sin({2x+\frac{π}{4}})({x∈R})$
(1)函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx,若對任意兩個不等的正實(shí)數(shù)x1,x2都有$\frac{{f(x{\;}_1)-f({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N*),則可歸納猜想{an}的通項(xiàng)公式為( 。
A.an=$\frac{2}{n}$B.an=$\frac{2}{n+1}$C.an=$\frac{1}{n}$D.an=$\frac{1}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,一個短軸端點(diǎn)到焦點(diǎn)的距離為2.
(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質(zhì):若橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),則橢圓在其上一點(diǎn)A(m,n)處的切線方程為$\frac{mx}{{a}^{2}}$+$\frac{ny}{^{2}}$=1,試運(yùn)用該性質(zhì)解決以下問題:
(i)如圖(1),點(diǎn)P為C1在第一象限中的任意一點(diǎn),過P作C1的切線l,l分別與x軸和y軸的正半軸交于A、B兩點(diǎn),求△OAB面積的最小值;
(ii)如圖(2),已知圓C2:x2+y2=1的切線與橢圓C1交于M、N兩點(diǎn),又橢圓C1在M、N兩點(diǎn)處的切線l1、l2相交于點(diǎn)T,若$E(-2\sqrt{3},0),F(xiàn)(2\sqrt{3},0)$,求證:|TE|+|TF|為定值.

查看答案和解析>>

同步練習(xí)冊答案