5.某學(xué)校有甲、乙兩個(gè)實(shí)驗(yàn)班,為了了解班級(jí)成績(jī),采用分層抽樣的方法從甲、乙兩個(gè)班學(xué)生中分別抽取8名和6名測(cè)試他們的數(shù)學(xué)成績(jī)與英語成績(jī)(單位:分),用表示(m,n).下面是乙班6名學(xué)生的測(cè)試分?jǐn)?shù):A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(xiàn)(134,132),當(dāng)學(xué)生的數(shù)學(xué)、英語成績(jī)滿足m≥135,且n≥130時(shí),該學(xué)生定為優(yōu)秀學(xué)生.
(1)已知甲班共有80名學(xué)生,用上述樣本數(shù)據(jù)估計(jì)乙班優(yōu)秀生的數(shù)量;
(2)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取3名,求至少有兩名優(yōu)秀生的概率;
(3)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取2名,其中優(yōu)秀生數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

分析 (1)設(shè)乙班共有學(xué)生x名,則$\frac{8}{80}=\frac{6}{x}$,解得x=60.即乙班共有學(xué)生60名.由測(cè)試成績(jī)可知:A,B,C,E四名學(xué)生為優(yōu)秀生,即可得出.
(2)至少有兩名優(yōu)秀生的情況包括兩種:一種是只有兩名優(yōu)秀學(xué)生,另一種是3名都是優(yōu)秀生.利用互斥事件與相互獨(dú)立事件、古典概率計(jì)算公式即可得出.
(3)由已知可得:ξ的值為0,1,2,從乙班抽出的上述6名學(xué)生中隨機(jī)抽取1名是優(yōu)秀生的概率為$\frac{2}{3}$.
則ξ~B$(2,\frac{2}{3})$,P(ξ=k)=${∁}_{2}^{k}(\frac{2}{3})^{k}(\frac{1}{3})^{2-k}$,即可得出分布列與數(shù)學(xué)期望.

解答 解:(1)設(shè)乙班共有學(xué)生x名,則$\frac{8}{80}=\frac{6}{x}$,解得x=60.即乙班共有學(xué)生60名.由測(cè)試成績(jī)可知:A,B,C,E四名學(xué)生為優(yōu)秀生,∴$60×\frac{4}{6}$=40.
∴用上述樣本數(shù)據(jù)估計(jì)乙班優(yōu)秀生的數(shù)量為40
(2)至少有兩名優(yōu)秀生的情況包括兩種:一種是只有兩名優(yōu)秀學(xué)生,另一種是3名都是優(yōu)秀生.
∴要求的概率P=$\frac{{∁}_{4}^{2}{∁}_{2}^{1}+{∁}_{4}^{3}}{{∁}_{6}^{3}}$=$\frac{4}{5}$.
(3)由已知可得:ξ的值為0,1,2,從乙班抽出的上述6名學(xué)生中隨機(jī)抽取1名是優(yōu)秀生的概率為$\frac{2}{3}$.
則ξ~B$(2,\frac{2}{3})$,P(ξ=k)=${∁}_{2}^{k}(\frac{2}{3})^{k}(\frac{1}{3})^{2-k}$,可得P(ξ=0)=$\frac{1}{9}$,P(ξ=1)=$\frac{4}{9}$,P(ξ=0)=$\frac{4}{9}$.

 ξ 0 1 2
 P $\frac{1}{9}$ $\frac{4}{9}$ $\frac{4}{9}$
∴Eξ=$2×\frac{2}{3}$=$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了分層抽樣、互斥事件與相互獨(dú)立事件、古典概率計(jì)算公式、二項(xiàng)分布列的計(jì)算公式與數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某算法的偽代碼如圖所示,如果輸入的x值為32,則輸出的y值為5. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|$\frac{x-10}{x-1}$≤0},B={y|y=lgx,x∈A},則A∪B=(  )
A.{1}B.C.[0,10]D.(0,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an},a1=-ll,公差d≠0,且a2,a5,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i是虛數(shù)單位,則復(fù)數(shù)$z={({\frac{1+i}{{\sqrt{2}}}})^{2017}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為N,過點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),若$\overrightarrow{NB}•\overrightarrow{AB}=0$,則|AF|-|BF|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中的真命題為( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使得$\overrightarrow{a}$=λ$\overrightarrow$
B.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ≤4)=0.79,則P(ξ≤-2)=0.21
C.“φ=$\frac{3π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}滿足a1=1,a2+a3=3,則a1+a2+a3+a4+a5+a6+a7=( 。
A.7B.14C.21D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA上的中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形;
(2)求證:直線BD∥平面EFGH;
(3)若AC⊥BD,且AC=12,BD=8,求四邊形EFGH的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案