13.已知函數(shù)f(x)=x2-4|x|+3,x∈R.
(1)判斷函數(shù)的奇偶性并將函數(shù)寫(xiě)成分段函數(shù)的形式;
(2)畫(huà)出函數(shù)的圖象,根據(jù)圖象寫(xiě)出它的單調(diào)區(qū)間;
(3)若函數(shù)f(x)的圖象與y=a的圖象有四個(gè)不同交點(diǎn),則實(shí)數(shù)a的取值范圍.

分析 (1)由f(-x)=f(x)得函數(shù)為偶函數(shù),對(duì)x分類(lèi)討論:x≥0,x<0得分段函數(shù)的解析式;
(2)由分段函數(shù)分兩種情況作二次函數(shù)的圖象;
(3)由圖象可知函數(shù)的單調(diào)區(qū)間及值域.

解答 解:(1)因?yàn)楹瘮?shù)的定義域?yàn)镽,關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),
且f(-x)=(-x)2-4|-x|+3=x2-4|x|+3=f(x),
故函數(shù)為偶函數(shù).
f(x)=x2-4|x|+3=$\left\{\begin{array}{l}{{x}^{2}-4x+3,x≥0}\\{{x}^{2}+4x+3,x<0}\end{array}\right.$
(2)如圖,
單調(diào)增區(qū)間為::[-2,0),[2,+∞),
單調(diào)減區(qū)間為(-∞,-2),[0,2].
(3)由函數(shù)的圖象可知:函數(shù)f(x)的圖象與y=a的圖象有四個(gè)不同交點(diǎn),則實(shí)數(shù)a的取值范圍:(-1,3).

點(diǎn)評(píng) 本題考查函數(shù)的圖象及性質(zhì).考查數(shù)形結(jié)合思想,轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.方程x5-x-1=0的一個(gè)正零點(diǎn)的存在區(qū)間可能是( 。
A.[0,1]B.[1,2]C.[2,3]D.[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,是函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分,則函數(shù)解析式是(  )
A.$y=2sin(2x+\frac{π}{6})+1$B.$y=sin(2x+\frac{π}{3})+1$C.$y=2sin(\frac{1}{2}x+\frac{π}{6})+2$D.$y=sin(2x+\frac{π}{3})+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)集合A={x|a-3<x<a+3},B={x|x2-2x-3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=log2(4x)•log2(2x),且x滿(mǎn)足4-17x+4x2≤0,求f(x)的最值,并求出取得最值時(shí),對(duì)應(yīng)f(x)的 值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=?lnx?,關(guān)于x的不等式f(x)-f(1)≥c(x-1)的解集為(0,+∞),則實(shí)數(shù)c的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.求圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)關(guān)于直線(xiàn)x+y=0對(duì)稱(chēng)的充要條件D+E=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)為減函數(shù),若f(2)=0,不等式(x-1)f(x-1)>0的解集為(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{-{2^x}+1}}{{{2^x}+1}}$.
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案