6.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.
(1)若a=2$\sqrt{3}$,A=$\frac{π}{3}$,且△ABC的面積S=2$\sqrt{3}$,求b,c的值;
(2)若sin(C-B)=sin2B-sinA,試判斷△ABC的形狀.

分析 (Ⅰ)根據(jù)△ABC的面積S和余弦定理,組成方程組求出b、c的值;
(2)由題意,利用三角形的內(nèi)角和定理與三角恒等變換公式,
化簡求值,得出$△\\;ABC$ABC的形狀.

解答 解:(Ⅰ)由題意知:a=2$\sqrt{3}$,A=$\frac{π}{3}$,△ABC的面積S=2$\sqrt{3}$,
∴S=$\frac{1}{2}$bcsinA=2$\sqrt{3}$,
可得:bc=8;…?①
由余弦定理a2=b2+c2-2bccosA,
代入化簡得:(b+c)2=36,
∴b+c=6;…②
  連立①②得:b=2,c=4或b=4,c=2;…6分
(2)由題意知:sin(C-B)=sin2B-sinA,
∴sin(C+B)+sin(C-B)=sin2B,
化簡得:sinCcosB=sinBcosB,
∴cosB=0或sinC=sinB; 
 又A,B∈(0,π),
 所以B=$\frac{π}{2}$ 或C=B;
 即$△\\;ABC$ABC為直角三角形或等腰三角形.…12分

點(diǎn)評 本題考查了正弦、余弦定理的應(yīng)用問題,也考查了三角恒等變換的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)一個(gè)軸截面是邊長為4的正方形的圓柱體積為V1,底面邊長為$2\sqrt{3}$,側(cè)棱長為$\sqrt{10}$的正四棱錐的體積為V2,則$\frac{V_1}{V_2}$的值是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的離心率為e,拋物線x=my2的焦點(diǎn)為(e,0),則實(shí)數(shù)m的值為( 。
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy內(nèi),橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)F到右準(zhǔn)線的距離為2,直線l過右焦點(diǎn)F且與橢圓E交于A、B兩點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l與x軸垂直,C為橢圓E上的動(dòng)點(diǎn),求CA2+CB2的取值范圍;
(3)若動(dòng)直線l與x軸不重合,在x軸上是否存在定點(diǎn)P,使得PF始終平分∠APB?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,為了求出一個(gè)邊長為10的正方形內(nèi)的不規(guī)則圖形的面積,小明設(shè)計(jì)模擬實(shí)驗(yàn):向這個(gè)正方形內(nèi)均勻的拋灑20粒芝麻,結(jié)果有8粒落在了不規(guī)則圖形內(nèi),則不規(guī)則圖形的面積為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知($\sqrt{x}$-$\frac{1}{2\root{4}{x}}$)n的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列.
(1)求n的值;
(2)求展開式中含x項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y=-2x2的焦點(diǎn)坐標(biāo)是( 。
A.(0,$\frac{1}{8}$)B.(0,-$\frac{1}{8}$)C.($\frac{1}{8}$,0)D.(-$\frac{1}{8}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,m),若$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明命題“若abc=0,則a,b,c中至少有一個(gè)為0”時(shí),假設(shè)正確的是(  )
A.假設(shè)a,b,c都不為0B.假設(shè)a,b,c不都為0
C.假設(shè)a,b,c至多有一個(gè)為0D.假設(shè)a,b,c都為0

查看答案和解析>>

同步練習(xí)冊答案