分析 (1)求出兩平行直線4x-2y+7=0,2x-y+1=0之間的距離,利用兩平行直線4x-2y+7=0,2x-y+1=0之間的距離等于坐標(biāo)原點(diǎn)O到直線l:x-2y+m=0(m>0)的距離的一半,建立方程,即可求m的值;
(2)求出C到直線l的距離,即可得出結(jié)論.
解答 解:(1)2x-y+1=0化為4x-2y+2=0,
則兩平行直線4x-2y+7=0,2x-y+1=0之間的距離等于$\frac{|7-2|}{\sqrt{16+4}}$=$\frac{\sqrt{5}}{2}$,
∴點(diǎn)O到直線l:x-2y+m=0(m>0)的距離=$\frac{|m|}{\sqrt{5}}$=$\sqrt{5}$,
∵m>0
∴m=5;
(2)圓C:x2+(y-2)2=$\frac{1}{5}$的圓心C(0,2),半徑r=$\frac{\sqrt{5}}{5}$,
∵C到直線l的距離d=$\frac{|-4+5|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
∴l(xiāng)與圓C相切.
點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查兩條平行線間的距離,點(diǎn)到直線的距離公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5、2$\sqrt{7}$ | B. | 5、7$\sqrt{7}$ | C. | 7 7$\sqrt{2}$ | D. | 5、$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2016,0) | B. | (-∞,-2017) | C. | (-∞,-2016) | D. | (-2016,-2015) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{8}{15}$ | D. | $\frac{14}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-2=0 | C. | x-y+2=0 | D. | x-y-1=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com