分析 (1)確定點M到點$C({\frac{1}{2},0})$與直線$x=-\frac{1}{2}$的距離相等,即可求圓心M的軌跡L的方程;
(2)直線l的方程為y=x-2,聯(lián)立y2=2x得x2-6x+4=0,證明$\overrightarrow{OA}•\overrightarrow{OB}$=0,即可證明結論.
解答 解:(1)設動圓M的半徑為r,
∵圓M與圓$C:{({x-\frac{1}{2}})^2}+{y^2}=\frac{1}{16}$外切,∴$|{MC}|=r+\frac{1}{4}$,…(1分)
∵圓M與直線$x=-\frac{1}{4}$相切,∴圓心M到直線$x=-\frac{1}{4}$的距離為r,…(2分)
則圓心M到直線$x=-\frac{1}{2}$的距離為$r+\frac{1}{4}$,…(3分)
∴點M到點$C({\frac{1}{2},0})$與直線$x=-\frac{1}{2}$的距離相等,…(4分)
即圓心M的軌跡方程是拋物線y2=2x…(5分)
(2)直線l的方程為y=x-2,聯(lián)立y2=2x得x2-6x+4=0,
設A(x1,y1),B(x2,y2),則x1+x2=6,x1x2=4…(10分)
∵$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=2x1x2-2(x1+x2)+4=0,
∴OA⊥OB…(12分)
點評 本題考查軌跡方程,考查拋物線定義的運用,考查直線與拋物線的位置關系,考查向量知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x+2y-3=0 | B. | 2x-2y-3=0 | C. | 4x-y-3=0 | D. | 4x+y-3=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{15}$ | C. | $\frac{13}{15}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com