12.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當(dāng)x∈(0,1)時(shí),f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于( 。
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 由f(x+1)=f(x-1)化簡(jiǎn)后求出函數(shù)的周期,利用奇函數(shù)的性質(zhì)、函數(shù)的周期性、對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)和轉(zhuǎn)化f(log${\;}_{\frac{1}{2}}$24),代入已知的解析式由指數(shù)的運(yùn)算性質(zhì)求值即可.

解答 解:∵f(x+1)=f(x-1),∴f(x+2)=f(x),
則函數(shù)f(x)的周期是2,
∵f(x)是定義在R上的奇函數(shù),
∴f(log${\;}_{\frac{1}{2}}$24)=f(-$lo{g}_{2}^{24}$)=-f($lo{g}_{2}^{24}$)
=-f($lo{g}_{2}^{(8×3)}$)=-f(3+$lo{g}_{2}^{3}$)=-f(-1+$lo{g}_{2}^{3}$)
∵1<$lo{g}_{2}^{3}$<2,∴0<-1+$lo{g}_{2}^{3}$<1,
∵當(dāng)x∈(0,1)時(shí),f(x)=2x-2,
∴f(-1+$lo{g}_{2}^{3}$)=${2}^{-1+lo{g}_{2}^{3}}-2$=$\frac{3}{2}$-2=$-\frac{1}{2}$,
即f(log${\;}_{\frac{1}{2}}$24)=$\frac{1}{2}$,
故選C.

點(diǎn)評(píng) 本題考查奇函數(shù)的性質(zhì),函數(shù)的周期性,以及指數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì)的綜合應(yīng)用,考查轉(zhuǎn)化思想,化簡(jiǎn)、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{2x+1}{x+1}$
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論
(2)求該函數(shù)在區(qū)間[2,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若q是p的充分條件,則a的取值范圍為[-1,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=x4+2x2是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F在棱CC1上,且CF=2FC1,P是側(cè)面四邊形BCC1B1內(nèi)一點(diǎn)(含邊界),若A1P∥平面AEF,則直線A1P與面BCC1B1所成角的正弦值的取值范圍是( 。
A.$[\frac{{2\sqrt{5}}}{5},\frac{{5\sqrt{29}}}{29}]$B.$[\frac{{3\sqrt{13}}}{13},\frac{{5\sqrt{29}}}{29}]$C.$[\frac{{3\sqrt{13}}}{13},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,離心率$e=\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過左焦點(diǎn)F1且傾斜角為$\frac{π}{4}$的直線l與橢圓交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的S值為( 。
A.2017B.2C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在四棱錐S-ABCD中,已知SC⊥平面ABCD,底面ABCD是邊長(zhǎng)為4$\sqrt{2}$的菱形,∠BCD=60°,SC=2,E為BC的中點(diǎn),若點(diǎn)P在SE上移動(dòng),則△PCA面積的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|},x≠2}\\{1,x=2}\end{array}\right.$,若關(guān)于x的方程f2(x)+af(x)+b=0有三個(gè)不同的實(shí)數(shù)解x1,x2,x3,且x1<x2<x3,則下列說法中錯(cuò)誤的是( 。
A.x12+x22+x32=14B.1+a+b=0C.a2-4b=0D.x1+x3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案