分析 數(shù)列{an}滿足a1=1,且an+1-an=n+1,n∈N*,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1與等差數(shù)列的求和公式可得an,再利用裂項求和方法即可得出.
解答 解:∵數(shù)列{an}滿足a1=1,且an+1-an=n+1,n∈N*,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1
=$\frac{n(n+1)}{2}$.
∴$\frac{1}{{a}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和Sn=2$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.
故答案為:$\frac{2n}{n+1}$.
點評 本題考查了累加求和方法、“裂項求和”方法、等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -$\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $-\frac{4}{3}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等級 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,35) | [35,55] |
單價(元/只) | 1.2 | 1.5 | 1.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com