3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{3}{3{a}_{n}+2}$,n∈N*
(1)求證:$\frac{3}{5}$≤an≤1;
(2)求證:|a2n-an|≤$\frac{2}{5}$.

分析 (1)當(dāng)n=1時(shí),${a}_{2}=\frac{3}{3{a}_{1}+2}$=$\frac{3}{5}$,成立;假設(shè)當(dāng)n=k時(shí),有$\frac{3}{5}≤{a}_{k}≤1$成立,則當(dāng)n=k+1時(shí),${a}_{k+1}=\frac{1}{{a}_{k}+\frac{2}{3}}$≤$\frac{1}{\frac{3}{5}+\frac{2}{3}}$≤1,${a}_{k+1}=\frac{1}{{a}_{k}+\frac{2}{3}}$≥$\frac{1}{1+\frac{2}{3}}$=$\frac{3}{5}$,由此利用數(shù)學(xué)歸納法能證明$\frac{3}{5}$≤an≤1.
(2)當(dāng)n=1時(shí),|a2-a1|=$\frac{2}{5}$,當(dāng)n≥2時(shí),|an+1-an|=$\frac{|{a}_{n}-{a}_{n-1}|}{({a}_{n}+\frac{2}{3})({a}_{n-1}+\frac{2}{3})}$≤$\frac{3}{5}$|an-an-1|<…<($\frac{3}{5}$)n-1|a2-a1|=$\frac{2}{5}(\frac{3}{5})^{n-1}$,由此能證明|a2n-an|≤$\frac{2}{5}$.

解答 證明:(1)用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),${a}_{2}=\frac{3}{3{a}_{1}+2}$=$\frac{3}{5}$,成立;
②假設(shè)當(dāng)n=k時(shí),有$\frac{3}{5}≤{a}_{k}≤1$成立,則當(dāng)n=k+1時(shí),
${a}_{k+1}=\frac{1}{{a}_{k}+\frac{2}{3}}$≤$\frac{1}{\frac{3}{5}+\frac{2}{3}}$≤1,
${a}_{k+1}=\frac{1}{{a}_{k}+\frac{2}{3}}$≥$\frac{1}{1+\frac{2}{3}}$=$\frac{3}{5}$,
∴當(dāng)n=k+1時(shí),$\frac{3}{5}≤{a}_{k+1}≤1$,命題也成立.
由①②得$\frac{3}{5}$≤an≤1.
(2)當(dāng)n=1時(shí),|a2-a1|=$\frac{2}{5}$,
當(dāng)n≥2時(shí),∵(${a}_{n}+\frac{2}{3}$)(${a}_{n-1}+\frac{2}{3}$)=(${a}_{n}+\frac{2}{3}$)$\frac{1}{{a}_{n}}$=1+$\frac{2}{3{a}_{n}}$$≥1+\frac{2}{3}$=$\frac{5}{3}$,
∴|an+1-an|=|$\frac{1}{{a}_{n}+\frac{2}{3}}-\frac{1}{{a}_{n-1}+\frac{2}{3}}$|=$\frac{|{a}_{n}-{a}_{n-1}|}{({a}_{n}+\frac{2}{3})({a}_{n-1}+\frac{2}{3})}$≤$\frac{3}{5}$|an-an-1|<…<($\frac{3}{5}$)n-1|a2-a1|=$\frac{2}{5}(\frac{3}{5})^{n-1}$,
∴|a2n-a2n-1|≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an|
≤$\frac{2}{5}(\frac{3}{5})^{2n-2}+\frac{2}{5}(\frac{3}{5})^{2n-3}+…+\frac{2}{5}(\frac{3}{5})^{n-1}$=$\frac{2}{5}×\frac{(\frac{3}{5})^{n-1}[1-(\frac{3}{5})^{n}]}{1-\frac{3}{5}}$
=($\frac{3}{5}$)n-1-($\frac{3}{5}$)2n-1≤$\frac{3}{5}-(\frac{3}{5})^{3}=\frac{48}{125}<\frac{2}{5}$,
綜上:|a2n-an|≤$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查數(shù)列不等式的證明,涉及到數(shù)學(xué)時(shí)納法、放縮法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,考查創(chuàng)新意識(shí)、應(yīng)用意識(shí),是難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=1,$\frac{1}{{a}_{n}}$=$\frac{3}{{a}_{n+1}}$+$\frac{4}{{a}_{n}•{a}_{n+1}}$,則數(shù)列{an}的通項(xiàng)an=3n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.同時(shí)擲兩個(gè)骰子,各擲一次,向上的點(diǎn)數(shù)之和是6的概率是( 。
A.$\frac{1}{12}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)復(fù)數(shù)z=(2+i)2(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為3-4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}中,a1=1,a2=4,a3=10.若{an+1-an}是等比數(shù)列,則$\sum_{i=1}^{10}{a}_{i}$=3×2n-2n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè){an}為各項(xiàng)均為正數(shù)的等比數(shù)列,且a2=$\frac{1}{3}$,a6=$\frac{1}{243}$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求和:T2n=a1-2a2+3a3-…-2na2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x∈N|lgx≤1},B={x|x2<16},則A∩B=( 。
A.(-∞,4)B.(0,4)C.{0,1,2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x-1,則不等式f(x)+7<0的解集為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某初級(jí)中學(xué)籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有8個(gè)籃球,其中4個(gè)是新的(即沒有用過的球),4個(gè)是舊的(即至少用過一次的球),毎次訓(xùn)練都從中任意取出2個(gè)球,用完后放回,則第二次訓(xùn)練時(shí)恰好取到1個(gè)新球的概率為( 。
A.$\frac{24}{49}$B.$\frac{4}{7}$C.$\frac{25}{49}$D.$\frac{51}{98}$

查看答案和解析>>

同步練習(xí)冊(cè)答案