A. | f(1)>ef(0),f(2016)>e2016f(0) | B. | f(1)<ef(0),f(2016)>e2016f(0) | ||
C. | f(1)>ef(0),f(2016)<e2016f(0) | D. | f(1)<ef(0),f(2016)>e2016f(0) |
分析 根據(jù)選項(xiàng)的特點(diǎn),令g(x)=$\frac{f(x)}{{e}^{x}}$,對(duì)其進(jìn)行求導(dǎo),根據(jù)已知條件f(x)<f′(x),可以判斷g(x)的單調(diào)性,從而可判定選項(xiàng)的正確與否.
解答 解:f(x)為定義在(-∞,+∞)上的可導(dǎo)函數(shù),且f(x)<f′(x)對(duì)于x∈R恒成立,
令g(x)=$\frac{f(x)}{{e}^{x}}$,
∴g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
∴g(x)是R上的增函數(shù),
∴g(1)>g(0),g(2016)>g(0),
即$\frac{f(1)}{e}$>$\frac{f(0)}{{e}^{0}}$,$\frac{f(2016)}{{e}^{2016}}$>$\frac{f(0)}{{e}^{0}}$,
則f(1)>ef(0),f(2016)>e2016f(0),
故選:A.
點(diǎn)評(píng) 此題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的關(guān)鍵是構(gòu)造函數(shù)g(x),是一道好題.另外我們的一般規(guī)律是看到f(x)<f′(x)時(shí),就應(yīng)該想到構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x(萬元) | 1 | 2 | 3 | 4 | 5 |
y(萬元) | 24 | 30 | 38 | 42 | 51 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24π+48 | B. | $24π+90+6\sqrt{41}$ | C. | 48π+48 | D. | $24π+66+6\sqrt{41}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com