19.已知$f(x)=sin(\frac{1}{2}x+\frac{π}{3})$
(1)求函數(shù)f(x)的最小正周期和最大值,并求出x為何值時,f(x)取得最大值;
(2)求函數(shù)f(x)在[-2π,2π]上的單調(diào)增區(qū)間.

分析 (1)根據(jù)三角函數(shù)在周期公式和性質(zhì)可得函數(shù)f(x)的最小正周期和最大值.
(2)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;即可求解在[-2π,2π]上的單調(diào)增區(qū)間.

解答 解:函數(shù)$f(x)=sin(\frac{1}{2}x+\frac{π}{3})$
(1)函數(shù)f(x)的最小正周期T=$\frac{2π}{\frac{1}{2}}=4π$,
根據(jù)正弦三角函數(shù)的圖象和性質(zhì):當$\frac{1}{2}x+\frac{π}{3}=\frac{π}{2}+2kπ$時,
即x=$4kπ+\frac{π}{3}$,函數(shù)f(x)取得最大值為1.
可得f(x)取得最大值時x的集合為{x|x=$4kπ+\frac{π}{3}$,k∈Z}
(2)令$-\frac{π}{2}+2kπ≤\frac{1}{2}x+\frac{π}{3}≤\frac{π}{2}+2kπ$,
得$-\frac{5π}{3}+4kπ≤x≤\frac{π}{3}+4kπ,k∈Z$,
設A=[-2π,2π]
$B=[-\frac{5π}{3}+4kπ,\frac{π}{3}+4kπ]k∈Z$
所以,$A∩B=[-\frac{5π}{3},\frac{π}{3}]$
即函數(shù)f(x)在[-2π,2π]上的單調(diào)增區(qū)間為$[-\frac{5π}{3},\frac{π}{3}]$.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在各棱長均為4的直四棱柱ACCD-A1B1C1D1中,底面ABCD為菱形,∠BAD=60°,E為梭BB1上一點,且BE=3EB1
(1)求證:平面ACE丄平面BDD1B1
(2)平面AED1將四棱柱ABCD-A1B1C1D1分成上、下兩部分.求這兩部分的休積之比
(梭臺的體積公式為V=$\frac{1}{3}$(S′+$\sqrt{SS′}$+S)h,其中S',S分別為上、下底面面積,h為棱臺的高)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,an+1=$\frac{2(n+1){a}_{n}}{n}$+n+1.
(I)求證:數(shù)列{$\frac{{a}_{n}}{n}$+1}是等比教列.
(II)求數(shù)列{an}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,并判斷是否有90%的把握認為“空間想象能力突出”與性別有關;
空間想象能力突出空間想象能力正常合計
男生
女生
合計
(2)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.
下面公式及臨界值表僅供參考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(X2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)$f(x)=\frac{1}{2}{x^3}-a{x^2}+1$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)方程f(x)=0有三個不同的解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( 。
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,點($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$)在C 上.
(Ⅰ)求橢圓C的方程
(Ⅱ)設點(2x,y)在C上,點(x,y) 的軌跡為曲線E,過原點作直線l與曲線E交于A,B兩點,點D (-2,0),證明:$\overrightarrow{DA}$•$\overrightarrow{DB}$為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(1)當a=0時,求f(x)在x=1處的切線方程;
(2)當a<0時,討論f(x)的單調(diào)性;
(3)若?a∈(-3,-2),x1,x2∈[1,3],有(m+ln3)a-2ln3>|f(x1)-f(x2)|,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)為定義在R行的可導函數(shù),且f(x)<f'(x)對于x∈R恒成立,且e為自然對數(shù)的底數(shù),則下面正確的是( 。
A.f(1)>ef(0),f(2016)>e2016f(0)B.f(1)<ef(0),f(2016)>e2016f(0)
C.f(1)>ef(0),f(2016)<e2016f(0)D.f(1)<ef(0),f(2016)>e2016f(0)

查看答案和解析>>

同步練習冊答案