8.i表示虛數(shù)單位,則1+i+i2+…+i2005=1+i.

分析 由i+i2+i3+i4=0,再結(jié)合其周期性,解出即可.

解答 解:∵i+i2+i3+i4=i-1-i+1=0,
∴復(fù)數(shù)z=1+i+i2+i3+…+i2005=1+i,
故答案是:1+i.

點(diǎn)評 本題考查復(fù)數(shù)單位的乘方的意義,本題解題的關(guān)鍵是看出這些數(shù)字的和具有周期性,看出周期得到結(jié)果,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(1)當(dāng)a=0時,求f(x)在x=1處的切線方程;
(2)當(dāng)a<0時,討論f(x)的單調(diào)性;
(3)若?a∈(-3,-2),x1,x2∈[1,3],有(m+ln3)a-2ln3>|f(x1)-f(x2)|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)為定義在R行的可導(dǎo)函數(shù),且f(x)<f'(x)對于x∈R恒成立,且e為自然對數(shù)的底數(shù),則下面正確的是( 。
A.f(1)>ef(0),f(2016)>e2016f(0)B.f(1)<ef(0),f(2016)>e2016f(0)
C.f(1)>ef(0),f(2016)<e2016f(0)D.f(1)<ef(0),f(2016)>e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中正確的有( 。
①設(shè)有一個回歸方程$\stackrel{∧}{y}$=2-3x,變量x增加一個單位時,y平均增加3個單位;
②命題p:“?x0∈R,x02-x0-1>0”的否定¬p“?x∈R,x2-x-1≤0”;
③殘差平方和越小的模型,擬合的效果越好;
④用相關(guān)指數(shù)R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)${({2x+\sqrt{x}})^5}$的展開式中,求x3的系數(shù);
(2)已知${({\sqrt{x}-\frac{a}{{\sqrt{x}}}})^5}$的展開式中含${x^{\frac{3}{2}}}$的項(xiàng)的系數(shù)為30,求a的值;
(3)$({x+\frac{a}{x}})•{({2x-\frac{1}{x}})^5}$的展開式中各項(xiàng)系數(shù)的和為2,求該展開式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=\sqrt{2x+1}+ln(3-4x)$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(Ⅰ)證明:PB⊥AC
(Ⅱ)求直線PB與平面BDE的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{a}$、$\overrightarrow$為單位向量,|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{2}$|$\overrightarrow{a}-\overrightarrow$|,則$\overrightarrow{a}$在$\overrightarrow{a}+\overrightarrow$的投影為( 。
A.$\frac{1}{3}$B.-$\frac{2\sqrt{6}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若如圖的程序框圖運(yùn)行的結(jié)構(gòu)為S=-$\frac{1}{2}$,則判斷框①中可以填入的是(  )
A.i>4?B.i≥4?C.i>3?D.i≥3?

查看答案和解析>>

同步練習(xí)冊答案