【題目】干支紀(jì)年法是中國(guó)歷法上自古以來就一直使用的紀(jì)年方法、干支是天干和地支的總稱,甲、乙、丙、丁、戊、己、庚、辛、壬、癸為天干:子、丑、寅、卯、辰、已、午、未,申、西、戌、亥為地支.把十天干和十二地支依次相配,如甲對(duì)子、乙對(duì)丑、丙對(duì)寅、癸對(duì)寅,其中天干比地支少兩位,所以天干先循環(huán),甲對(duì)戊、乙對(duì)亥、接下來地支循環(huán),丙對(duì)子、丁對(duì)丑、.,以此用來紀(jì)年,今年2020年是庚子年,那么中華人民共和國(guó)建國(guó)100周年即2049年是(

A.戊辰年B.己巳年C.庚午年D.庚子年

【答案】B

【解析】

由題意2020年是干支紀(jì)年法中的庚子年,則2049的天干為己,地支為巳,即可求出答案.

天干是以10為一周期,地支是以12為一周期,
2020年是干支紀(jì)年法中的庚子年,而,所以2049的天干為己,地支為已,
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形ABCD中,ADBCABBC,BDDC,點(diǎn)EBC的中點(diǎn).將△ABD沿BD折起,使ABAC,連接AEAC,DE,得到三棱錐ABCD.

1)求證:平面ABD⊥平面BCD

2)若AD=1,二面角CABD的余弦值為,求二面角BADE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中, 互相垂直, 是線段上一動(dòng)點(diǎn),若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,

(1)求證:平面平面

(2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,四邊形ABCD是邊長(zhǎng)為2的正方形,△PAD為等邊三角形,E,F分別為PCBD的中點(diǎn),且EFCD

1)證明:平面PAD⊥平面ABCD;

2)求點(diǎn)C到平面PDB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓上任意一點(diǎn),過點(diǎn)軸于點(diǎn),延長(zhǎng)到點(diǎn),使.

1)求點(diǎn)M的軌跡E的方程;

2)過點(diǎn)作圓O的切線l,交(1)中曲線E兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,過極點(diǎn)的射線與曲線相交于不同于極點(diǎn)的點(diǎn),且點(diǎn)的極坐標(biāo)為,其中

1)求的值;

2)若射線與直線相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的直角坐標(biāo)方程及直線軸正半軸及軸正半軸截距相等時(shí)的直角坐標(biāo)方程;

2)若,設(shè)直線與曲線交于不同的兩點(diǎn)、,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若曲線有且僅有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案