【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過(guò)微克/立方米,24小時(shí)平均濃度不得超過(guò)微克/立方米.某城市環(huán)保部門(mén)隨機(jī)抽取了一居民區(qū)去年20天24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別

濃度

(微克/立方米)

頻數(shù)(天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1

1從樣本中24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天

24小時(shí)平均濃度超過(guò)75微克/立方米的概率;

2求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是

否需要改進(jìn)?說(shuō)明理由

【答案】1;2去年該居民區(qū)年平均濃度不符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn),故該居民區(qū)的環(huán)境需要改進(jìn)

【解析】

試題分析:1利用列舉法求古典概型的概率;2計(jì)算出去年該居民區(qū)年平均濃度,故該居民區(qū)的環(huán)境需要改進(jìn)

試題解析:1設(shè)小時(shí)平均濃度在內(nèi)的三天記為,,,24小時(shí)平均濃度在內(nèi)的兩天記為

所以5天任取2天的情況有:,,,,,,10種.

其中符合條件的有:,,,,共6種.

所以所求的概率

2去年該居民區(qū)年平均濃度為

微克/立方米

因?yàn)?/span>所以去年該居民區(qū)年平均濃度不符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn),故該居民區(qū)的環(huán)境需要改進(jìn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.

若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y單位:元關(guān)于當(dāng)天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)單位:元的平均數(shù);

若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間”為事件A,求PA的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,a),圓x2y2=4.

(1)若過(guò)點(diǎn)A的圓的切線(xiàn)只有一條,求a的值及切線(xiàn)方程;

(2)若過(guò)點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線(xiàn)被圓截得的弦長(zhǎng)為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過(guò)分層抽樣獲取了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).

6

7

6

7

8

5

6

7

8

(1)試估計(jì)班學(xué)生人數(shù);

(2)從班和班抽出來(lái)的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,求甲的鍛煉時(shí)間大于乙的鍛煉時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.

(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;

(2)當(dāng)M點(diǎn)位于線(xiàn)段PC什么位置時(shí),PA∥平面MBD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)班有男同學(xué)45名,女同學(xué)15名,老師按照分層抽樣的方法抽取4人組建了一個(gè)課外興趣小組.

(I)求課外興趣小組中男、女同學(xué)的人數(shù);

(II)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是從小組里選出一名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選出一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

(III)在(II)的條件下,第一次做實(shí)驗(yàn)的同學(xué)A得到的實(shí)驗(yàn)數(shù)據(jù)為38,40,41,42,44,第二次做實(shí)驗(yàn)的同學(xué)B得到的實(shí)驗(yàn)數(shù)據(jù)為39,40,40,42,44,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.

(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰(shuí)摸出的球上標(biāo)的數(shù)字大誰(shuí)就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形.

(1)求橢圓的方程;

(2)若分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,連結(jié),交橢圓于點(diǎn),證明:為定值;

(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過(guò)直線(xiàn)的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:某污水處理廠(chǎng)要在一個(gè)矩形污水處理池(的池底水平鋪設(shè)污水凈化管道(是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng)污水凈化效果越好,設(shè)計(jì)要求管道的的接口的中點(diǎn),分別落在線(xiàn)段上。已知米,米,記.

1試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;

2,求此時(shí)管道的長(zhǎng)度;

3當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度。

查看答案和解析>>

同步練習(xí)冊(cè)答案